ﻻ يوجد ملخص باللغة العربية
In 2009, Bang-Jensen asked whether there exists a function $g(k)$ such that every strongly $k$-connected $n$-vertex tournament contains a strongly $k$-connected spanning subgraph with at most $kn + g(k)$ arcs. In this paper, we answer the question by showing that every strongly $k$-connected $n$-vertex tournament contains a strongly $k$-connected spanning subgraph with at most $kn + 750k^2log(k+1)$ arcs.
In the minimum $k$-edge-connected spanning subgraph ($k$-ECSS) problem the goal is to find the minimum weight subgraph resistant to up to $k-1$ edge failures. This is a central problem in network design, and a natural generalization of the minimum sp
In the Survivable Network Design Problem (SNDP), the input is an edge-weighted (di)graph $G$ and an integer $r_{uv}$ for every pair of vertices $u,vin V(G)$. The objective is to construct a subgraph $H$ of minimum weight which contains $r_{uv}$ edge-
Let $n, k, m$ be positive integers with $ngg mgg k$, and let $mathcal{A}$ be the set of graphs $G$ of order at least 3 such that there is a $k$-connected monochromatic subgraph of order at least $n-f(G,k,m)$ in any rainbow $G$-free coloring of $K_n$
We study the number of connected spanning subgraphs $f_{d,b}(n)$ on the generalized Sierpinski gasket $SG_{d,b}(n)$ at stage $n$ with dimension $d$ equal to two, three and four for $b=2$, and layer $b$ equal to three and four for $d=2$. The upper and
We calculate exponential growth constants $phi$ and $sigma$ describing the asymptotic behavior of spanning forests and connected spanning subgraphs on strip graphs, with arbitrarily great length, of several two-dimensional lattices, including square,