ﻻ يوجد ملخص باللغة العربية
We study the number of connected spanning subgraphs $f_{d,b}(n)$ on the generalized Sierpinski gasket $SG_{d,b}(n)$ at stage $n$ with dimension $d$ equal to two, three and four for $b=2$, and layer $b$ equal to three and four for $d=2$. The upper and lower bounds for the asymptotic growth constant, defined as $z_{SG_{d,b}}=lim_{v to infty} ln f_{d,b}(n)/v$ where $v$ is the number of vertices, on $SG_{2,b}(n)$ with $b=2,3,4$ are derived in terms of the results at a certain stage. The numerical values of $z_{SG_{d,b}}$ are obtained.
Consider spanning trees on the two-dimensional Sierpinski gasket SG(n) where stage $n$ is a non-negative integer. For any given vertex $x$ of SG(n), we derive rigorously the probability distribution of the degree $j in {1,2,3,4}$ at the vertex and it
We study the number of acyclic orientations on the generalized two-dimensional Sierpinski gasket $SG_{2,b}(n)$ at stage $n$ with $b$ equal to two and three, and determine the asymptotic behaviors. We also derive upper bounds for the asymptotic growth
In the Survivable Network Design Problem (SNDP), the input is an edge-weighted (di)graph $G$ and an integer $r_{uv}$ for every pair of vertices $u,vin V(G)$. The objective is to construct a subgraph $H$ of minimum weight which contains $r_{uv}$ edge-
We derive exactly the number of Hamiltonian paths H(n) on the two dimensional Sierpinski gasket SG(n) at stage $n$, whose asymptotic behavior is given by $frac{sqrt{3}(2sqrt{3})^{3^{n-1}}}{3} times (frac{5^2 times 7^2 times 17^2}{2^{12} times 3^5 tim
We calculate exponential growth constants $phi$ and $sigma$ describing the asymptotic behavior of spanning forests and connected spanning subgraphs on strip graphs, with arbitrarily great length, of several two-dimensional lattices, including square,