ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Contrast Imaging of Intermediate-Mass Giants with Long-Term Radial Velocity Trends

74   0   0.0 ( 0 )
 نشر من قبل Tsuguru Ryu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A radial velocity (RV) survey for intermediate-mass giants has been operated for over a decade at Okayama Astrophysical Observatory (OAO). The OAO survey has revealed that some giants show long-term linear RV accelerations (RV trends), indicating the presence of outer companions. Direct imaging observations can help clarify what objects generate these RV trends. We present the results of high-contrast imaging observations or six intermediate-mass giants with long-term RV trends using the Subaru Telescope and HiCIAO camera. We detected co-moving companions to $gamma$ Hya B ($0.61^{+0.12}_{-0.14} M_odot$), HD 5608 B ($0.10 pm 0.01 M_odot$), and HD 109272 B ($0.28 pm 0.06 M_odot$). For the remaining targets($iota$ Dra, 18 Del, and HD 14067) we exclude companions more massive than 30-60 $M_mathrm{Jup}$ at projected separations of 1arcsec-7arcsec. We examine whether these directly imaged companions or unidentified long-period companions can account for the RV trends observed around the six giants. We find that the Kozai mechanism can explain the high eccentricity of the inner planets $iota$ Dra b, HD 5608 b, and HD 14067 b.

قيم البحث

اقرأ أيضاً

The G-type star GJ504A is known to host a 3 to 35 MJup companion whose temperature, mass, and projected separation all contribute to make it a test case for the planet formation theories and for atmospheric models of giant planets and light brown dwa rfs. We collected data from the CHARA interferometer, SOPHIE spectrograph, and VLT/SPHERE high contrast imager to revisit the properties of the system. We measure a radius of 1.35+/- 0.04Rsun for GJ504A which yields isochronal ages of 21+/-2Myr or 4.0+/-1.8Gyr for the system and line-of-sight stellar rotation axis inclination of $162.4_{-4.3}^{+3.8}$ degrees or $18.6_{-3.8}^{+4.3}$ degrees. We re-detect the companion in the Y2, Y3, J3, H2, and K1 dual band SPHERE images. The complete 1-4 $mu$m SED shape of GJ504b is best reproduced by T8-T9.5 objects with intermediate ages ($leq1.5$Gyr), and/or unusual dusty atmospheres and/or super-solar metallicities. All six atmospheric models used yield $mathrm{T_{eff}=550 pm 50}$K for GJ504b and point toward a low surface gravity (3.5-4.0 dex). The accuracy on the metallicity value is limited by model-to-model systematics. It is not degenerate with the C/O ratio. We derive $mathrm{log:L/L_{odot}=-6.15pm0.15}$ dex for the companion compatible with masses of $mathrm{M=1.3^{+0.6}_{-0.3}M_{Jup}}$ and $mathrm{M=23^{+10}_{-9} M_{Jup}}$ for the young and old age ranges, respectively. The semi-major axis (sma) is above 27.8 au and the eccentricity lower than 0.55. The posterior on GJ~504bs orbital inclination suggests a misalignment with GJ~504A rotation axis. We combine the radial velocity and multi-epoch imaging data to exclude additional objects (90% prob.) more massive than 2.5 and 30 $mathrm{M_{Jup}}$ with sma in the range 0.01-80 au for the young and old system ages, respectively. The companion is in the envelope of the population of planets synthetized with our core-accretion model.
We present the direct imaging detection of a faint tertiary companion to the single-lined spectroscopic binary HD 8375 AB. Initially noticed as an 53 m/s/yr Doppler acceleration by Bowler et al. 2010, we have obtained high-contrast adaptive optics ob servations at Keck using NIRC2 that spatially resolve HD 8375 C from its host(s). Astrometric measurements demonstrate that the companion shares a common proper-motion. We detect orbital motion in a clockwise direction. Multiband relative photometry measurements are consistent with a spectral-type of M1V. Our combined Doppler and imaging observations place a lower-limit of m>0.297Msun on its dynamical mass. We also provide a refined orbit for the inner pair using recent RV measurements obtained with HIRES. HD 8375 is one of many triple-star systems that are apparently missing in the solar neighborhood.
We present initial results from a new high-contrast imaging program dedicated to stars that exhibit long-term Doppler radial velocity accelerations (or trends). The goal of the TRENDS (TaRgetting bENchmark-objects with Doppler Spectroscopy and) imagi ng survey is to directly detect and study the companions responsible for accelerating their host star. In this first paper of the series, we report the discovery of low-mass stellar companions orbiting HD 53665, HD 68017, and HD 71881 using NIRC2 adaptive optics (AO) observations at Keck. Follow-up imaging demonstrates association through common proper-motion. These co-moving companions have red colors with estimated spectral-types of K7--M0, M5, and M3--M4 respectively. We determine a firm lower-limit to their mass from Doppler and astrometric measurements. In the near future, it will be possible to construct three-dimensional orbits and calculate the dynamical mass of HD 68017 B and possibly HD 71881 B. We already detect astrometric orbital motion of HD 68017 B, which has a projected separation of 13.0 AU. Each companion is amenable to AO-assisted direct spectroscopy. Further, each companion orbits a solar-type star, making it possible to infer metallicity and age from the primary. Such benchmark objects are essential for testing theoretical models of cool dwarf atmospheres.
We conducted speckle imaging observations of 53 stellar systems that were members of long-term radial velocity (RV) monitoring campaigns and exhibited substantial accelerations indicative of planetary or stellar companions in wide orbits. Our observa tions were made with blue and red filters using the Differential Speckle Survey Instrument at Gemini-South and the NN-Explore Exoplanet Stellar Speckle Imager at the WIYN telescope. The speckle imaging identifies eight luminous companions within two arcseconds of the primary stars. In three of these systems (HD 1388, HD 87359, and HD 104304), the properties of the imaged companion are consistent with the RV measurements, suggesting that these companions may be associated with the primary and the cause of the RV variation. For all 53 stellar systems, we derive differential magnitude limits (i.e., contrast curves) from the imaging. We extend this analysis to include upper limits on companion mass in systems without imaging detections. In 25 systems, we rule out companions with mass greater than 0.2 $M_{odot}$, suggesting that the observed RV signals are caused by late M dwarfs or substellar (potentially planetary) objects. On the other hand, the joint RV and imaging analysis almost entirely rules out planetary explanations of the RV signal for HD 19522 and suggests that the companion must have an angular separation below a few tenths of an arcsecond. This work highlights the importance of combined RV and imaging observations for characterizing the outer regions of nearby planetary systems.
141 - A. Zurlo , D. Mesa , S. Desidera 2018
We present observations with the planet finder SPHERE of a selected sample of the most promising radial velocity (RV) companions for high-contrast imaging. Using a Monte Carlo simulation to explore all the possible inclinations of the orbit of wide R V companions, we identified the systems with companions that could potentially be detected with SPHERE. We found the most favorable RV systems to observe are : HD,142, GJ,676, HD,39091, HIP,70849, and HD,30177 and carried out observations of these systems during SPHERE Guaranteed Time Observing (GTO). To reduce the intensity of the starlight and reveal faint companions, we used Principle Component Analysis (PCA) algorithms alongside angular and spectral differential imaging. We injected synthetic planets with known flux to evaluate the self-subtraction caused by our data reduction and to determine the 5$sigma$ contrast in the J band $vs$ separation for our reduced images. We estimated the upper limit on detectable companion mass around the selected stars from the contrast plot obtained from our data reduction. Although our observations enabled contrasts larger than 15 mag at a few tenths of arcsec from the host stars, we detected no planets. However, we were able to set upper mass limits around the stars using AMES-COND evolutionary models. We can exclude the presence of companions more massive than 25-28 MJup around these stars, confirming the substellar nature of these RV companions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا