ترغب بنشر مسار تعليمي؟ اضغط هنا

Imaging radial velocity planets with SPHERE

142   0   0.0 ( 0 )
 نشر من قبل Alice Zurlo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present observations with the planet finder SPHERE of a selected sample of the most promising radial velocity (RV) companions for high-contrast imaging. Using a Monte Carlo simulation to explore all the possible inclinations of the orbit of wide RV companions, we identified the systems with companions that could potentially be detected with SPHERE. We found the most favorable RV systems to observe are : HD,142, GJ,676, HD,39091, HIP,70849, and HD,30177 and carried out observations of these systems during SPHERE Guaranteed Time Observing (GTO). To reduce the intensity of the starlight and reveal faint companions, we used Principle Component Analysis (PCA) algorithms alongside angular and spectral differential imaging. We injected synthetic planets with known flux to evaluate the self-subtraction caused by our data reduction and to determine the 5$sigma$ contrast in the J band $vs$ separation for our reduced images. We estimated the upper limit on detectable companion mass around the selected stars from the contrast plot obtained from our data reduction. Although our observations enabled contrasts larger than 15 mag at a few tenths of arcsec from the host stars, we detected no planets. However, we were able to set upper mass limits around the stars using AMES-COND evolutionary models. We can exclude the presence of companions more massive than 25-28 MJup around these stars, confirming the substellar nature of these RV companions.

قيم البحث

اقرأ أيضاً

RefPlanets is a guaranteed time observation (GTO) programme that uses the Zurich IMaging POLarimeter (ZIMPOL) of SPHERE/VLT for a blind search for exoplanets in wavelengths from 600-900 nm. The goals of this study are the characterization of the unpr ecedented high polarimetic contrast and polarimetric precision capabilities of ZIMPOL for bright targets, the search for polarized reflected light around some of the closest bright stars to the Sun and potentially the direct detection of an evolved cold exoplanet for the first time. For our observations of Alpha Cen A and B, Sirius A, Altair, Eps Eri and Tau Ceti we used the polarimetric differential imaging (PDI) mode of ZIMPOL which removes the speckle noise down to the photon noise limit for angular separations >0.6. We describe some of the instrumental effects that dominate the noise for smaller separations and explain how to remove these additional noise effects in post-processing. We then combine PDI with angular differential imaging (ADI) as a final layer of post-processing to further improve the contrast limits of our data at these separations. For good observing conditions we achieve polarimetric contrast limits of 15.0-16.3 mag at the effective inner working angle of about 0.13, 16.3-18.3 mag at 0.5 and 18.8-20.4 mag at 1.5. The contrast limits closer in (<0.6) depend significantly on the observing conditions, while in the photon noise dominated regime (>0.6), the limits mainly depend on the brightness of the star and the total integration time. We compare our results with contrast limits from other surveys and review the exoplanet detection limits obtained with different detection methods. For all our targets we achieve unprecedented contrast limits. Despite the high polarimetric contrasts we are not able to find any additional companions or extended polarized light sources in the data that has been taken so far.
SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating modes, primarily in the field of direct imaging o f exoplanetary systems, focusing on exoplanets as point sources and circumstellar disks as extended objects. The achievements obtained thus far with SPHERE (~200 refereed publications) in different areas (exoplanets, disks, solar system, stellar physics...) have motivated a large consortium to propose an even more ambitious set of science cases, and its corresponding technical implementation in the form of an upgrade. The SPHERE+ project capitalizes on the expertise and lessons learned from SPHERE to push high contrast imaging performance to its limits on the VLT 8m-telescope. The scientific program of SPHERE+ described in this document will open a new and compelling scientific window for the upcoming decade in strong synergy with ground-based facilities (VLT/I, ELT, ALMA, and SKA) and space missions (Gaia, JWST, PLATO and WFIRST). While SPHERE has sampled the outer parts of planetary systems beyond a few tens of AU, SPHERE+ will dig into the inner regions around stars to reveal and characterize by mean of spectroscopy the giant planet population down to the snow line. Building on SPHEREs scientific heritage and resounding success, SPHERE+ will be a dedicated survey instrument which will strengthen the leadership of ESO and the European community in the very competitive field of direct imaging of exoplanetary systems. With enhanced capabilities, it will enable an even broader diversity of science cases including the study of the solar system, the birth and death of stars and the exploration of the inner regions of active galactic nuclei.
Context. The HARPS spectrograph provides state-of-the-art stellar radial velocity (RV) measurements with a precision down to 1 m/s. The spectra are extracted with a dedicated data-reduction software (DRS) and the RVs are computed by CCF with a numeri cal mask. Aims. The aim of this study is three-fold: (i) Create easy access to the public HARPS RV data set. (ii) Apply the new public SERVAL pipeline to the spectra, and produce a more precise RV data set. (iii) Check whether the precision of the RVs can be further improved by correcting for small nightly systematic effects. Methods. For each star observed with HARPS, we downloaded the publicly available spectra from the ESO archive and recomputed the RVs with SERVAL. We then computed nightly zero points (NZPs) by averaging the RVs of quiet stars. Results. Analysing the RVs of the most RV-quiet stars, whose RV scatter is < 5 m/s, we find that SERVAL RVs are on average more precise than DRS RVs by a few percent. We find three significant systematic effects, whose magnitude is independent of the software used for the RV derivation: (i) stochastic variations with a magnitude of 1 m/s; (ii) long-term variations, with a magnitude of 1 m/s and a typical timescale of a few weeks; and (iii) 20-30 NZPs significantly deviating by a few m/s. In addition, we find small (< 1 m/s) but significant intra-night drifts in DRS RVs before the 2015 intervention, and in SERVAL RVs after it. We confirm that the fibre exchange in 2015 caused a discontinuous RV jump, which strongly depends on the spectral type of the observed star: from 14 m/s for late F-type stars, to -3 m/s for M dwarfs. Conclusions. Our NZP-corrected SERVAL RVs can be retrieved from a user-friendly, public database. It provides more than 212 000 RVs for about 3000 stars along with many auxiliary information, NZP corrections, various activity indices, and DRS-CCF products.
Recent high-contrast imaging surveys, looking for planets in young, nearby systems showed evidence of a small number of giant planets at relatively large separation beyond typically 20 au where those surveys are the most sensitive. Access to smaller physical separations between 5 and 20 au is the next step for future planet imagers on 10 m telescopes and ELTs in order to bridge the gap with indirect techniques (radial velocity, transit, astrometry with Gaia). In that context, we recently proposed a new algorithm, Keplerian-Stacker, combining multiple observations acquired at different epochs and taking into account the orbital motion of a potential planet present in the images to boost the ultimate detection limit. We showed that this algorithm is able to find planets in time series of simulated images of SPHERE even when a planet remains undetected at one epoch. Here, we validate the K-Stacker algorithm performances on real SPHERE datasets, to demonstrate its resilience to instrumental speckles and the gain offered in terms of true detection. This will motivate future dedicated multi-epoch observation campaigns in high-contrast imaging to search for planets in emitted and reflected light. Results. We show that K-Stacker achieves high success rate when the SNR of the planet in the stacked image reaches 7. The improvement of the SNR ratio goes as the square root of the total exposure time. During the blind test and the redetection of HD 95086 b, and betaPic b, we highlight the ability of K-Stacker to find orbital solutions consistent with the ones derived by the state of the art MCMC orbital fitting techniques, confirming that in addition to the detection gain, K-Stacker offers the opportunity to characterize the most probable orbital solutions of the exoplanets recovered at low signal to noise.
Exoplanet detection with precise radial velocity (RV) observations is currently limited by spurious RV signals introduced by stellar activity. We show that machine learning techniques such as linear regression and neural networks can effectively remo ve the activity signals (due to starspots/faculae) from RV observations. Previous efforts focused on carefully filtering out activity signals in time using modeling techniques like Gaussian Process regression (e.g. Haywood et al. 2014). Instead, we systematically remove activity signals using only changes to the average shape of spectral lines, and no information about when the observations were collected. We trained our machine learning models on both simulated data (generated with the SOAP 2.0 software; Dumusque et al. 2014) and observations of the Sun from the HARPS-N Solar Telescope (Dumusque et al. 2015; Phillips et al. 2016; Collier Cameron et al. 2019). We find that these techniques can predict and remove stellar activity from both simulated data (improving RV scatter from 82 cm/s to 3 cm/s) and from more than 600 real observations taken nearly daily over three years with the HARPS-N Solar Telescope (improving the RV scatter from 1.47 m/s to 0.78 m/s, a factor of ~ 1.9 improvement). In the future, these or similar techniques could remove activity signals from observations of stars outside our solar system and eventually help detect habitable-zone Earth-mass exoplanets around Sun-like stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا