ترغب بنشر مسار تعليمي؟ اضغط هنا

Suzaku observations of the hard X-ray spectrum of Vela Jr

66   0   0.0 ( 0 )
 نشر من قبل Sawako Takeda
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the results of Suzaku observations of the young supernova remnant, Vela Jr. (RX J0852.0$-$4622), which is known to emit synchrotron X-rays, as well as TeV gamma-rays. Utilizing 39 Suzaku mapping observation data from Vela Jr., a significant hard X-ray emission is detected with the hard X-ray detector (HXD) from the north-west TeV-emitting region. The X-ray spectrum is well reproduced by a single power-law model with the photon index of 3.15$^{+1.18}_{-1.14}$ in the 12--22 keV band. Compiling this with the soft X-ray spectrum simultaneously observed with the X-ray imaging spectrometer (XIS) onboard Suzaku, we find that the wide-band X-ray spectrum in the 2--22 keV band is reproduced with a single power-law or concave broken power-law model, which are statistically consistent with each other. Whichever the model of a single or broken power-law is appropriate, clearly the spectrum has no rolloff structure. Applying this result to the method introduced in citet{yama2014}, we find that one-zone synchrotron model with electron spectrum having a power-law plus exponential cutoff may not be applicable to Vela Jr.

قيم البحث

اقرأ أيضاً

A report is presented on Suzaku observations of the ultra-luminous X-ray source X-1 in the starburst galaxy M82, made three time in 2005 October for an exposure of ~ 30 ks each. The XIS signals from a region of radius 3 around the nucleus defined a 2 -10 keV flux of 2.1 x 10^-11 erg s-1 cm-2 attributable to point sources. The 3.2-10 keV spectrum was slightly more convex than a power-law with a photon index of 1.7. In all observations, the HXD also detected signals from M82 up to ~ 20 keV, at a 12-20 keV flux of 4.4 x 10^-12 erg s-1 cm-2 . The HXD spectrum was steeper than that of the XIS. The XIS and HXD spectra can be jointly reproduced by a cutoff power-law model, or similar curved models. Of the detected wide-band signals, 1/3 to 2/3 are attributable to X-1, while the remainder to other discrete sources in M82. Regardless of the modeling of these contaminants, the spectrum attributable to X-1 is more curved than a power-law, with a bolometric luminosity of (1.5 -3) x 10 ^40 erg s-1. These results are interpreted as Comptonized emission from a black hole of 100-200 solar masses, radiating roughly at the Eddington luminosity.
95 - F. Fuerst , C. Mueller (2 , 3 2015
We present simultaneous XMM-Newton and NuSTAR observations spanning 3-78 keV of the nearest radio galaxy, Centaurus A (Cen A). The accretion geometry around the central engine in Cen A is still debated, and we investigate possible configurations usin g detailed X-ray spectral modeling. NuSTAR imaged the central region of Cen A with sub-arcminute resolution at X-ray energies above 10 keV for the first time, but finds no evidence for an extended source or other off-nuclear point-sources. The XMM-Newton and NuSTAR spectra agree well and can be described with an absorbed power-law with a photon index {Gamma} = 1.815 +/- 0.005 and a fluorescent Fe K{alpha} line in good agreement with literature values. The spectrum does not require a high-energy exponential rollover, with a constraint of E_fold > 1 MeV. A thermal Comptonization continuum describes the data well, with parameters that agree with values measured by INTEGRAL, in particular an electron temperature kTe between ~100-300 keV, seed photon input temperatures between 5-50 eV. We do not find evidence for reflection or a broad iron line and put stringent upper limits of R < 0.01 on the reflection fraction and accretion disk illumination. We use archival Chandra data to estimate the contribution from diffuse emission, extra-nuclear point-sources, and the outer X-ray jet to the observed NuSTAR and XMM-Newton X-ray spectra and find the contribution to be negligible. We discuss different scenarios for the physical origin of the observed hard X-ray spectrum, and conclude that the inner disk is replaced by an advection-dominated accretion flow or that the X-rays are dominated by synchrotron self-Compton emission from the inner regions of the radio jet or a combination thereof.
We present a detailed analysis of the X-ray emission from the middle-aged supernova remnant W51C and star-forming region W51B with Suzaku. The soft X-ray emission from W51C is well represented by an optically thin thermal plasma in the non-equilibriu m ionization state with a temperature of $sim$0.7 keV. The elemental abundance of Mg is significantly higher than the solar value. We find no significant feature of an over-ionized plasma in W51C. The hard X-ray emission is spatially coincident with the molecular clouds associated with W51B, overlapping with W51C. The spectrum is represented by an optically thin thermal plasma with a temperature of $sim$5 keV or a powerlaw model with a photon index of $sim$2.2. The emission probably has diffuse nature since its luminosity of 1$times10^{34}$ erg s$^{-1}$ in the 0.5-10 keV band cannot be explained by the emission from point sources in this region. We discuss the possibility that the hard X-ray emission comes from stellar winds of OB stars in W51B or accelerated particles in W51C.
We have analyzed the time variability of the wide-band X-ray spectrum of Vela X-1, the brightest wind-fed accreting neutron star, on a short timescale of 2 ks by using {it Suzaku} observations with an exposure of 100 ks. During the observation, the o bject showed strong variability including several flares and so-called low states, in which the X-ray luminosity decreases by an order of magnitude. Although the spectral hardness increases with the X-ray luminosity, the majority of the recorded flares do not show any significant changes of circumstellar absorption. However, a sign of heavy absorption was registered immediately before one short flare that showed a significant spectral hardening. In the low states, the flux level is modulated with the pulsar spin period, indicating that even at this state the accretion flow reaches the close proximity of the neutron star. Phenomenologically, the broad-band X-ray spectra, which are integrated over the entire spin phase, are well represented by the NPEX function (a combination of negative and positive power laws with an exponential cutoff by a common folding energy) with a cyclotron resonance scattering feature at 50 keV. Fitting of the data allowed us to infer a correlation between the photon index and X-ray luminosity. Finally, the circumstellar absorption shows a gradual increase in the orbital phase interval 0.25--0.3, which can be interpreted as an impact of a bow shock imposed by the motion of the compact object in the supersonic stellar wind.
Diffuse X-rays from the Galactic center (GC) region were found to exhibit many K-shell lines from iron and nickel atoms in the 6--9 keV band. The strong emission lines seen in the spectrum are neutral iron K$alpha$ at 6.4~keV, He-like iron K$alpha$ a t 6.7~keV, H-like iron Ly$alpha$ at 6.9~keV, and He-like iron K$beta$ at 7.8~keV. Among them, the 6.4~keV emission line is a probe of non-thermal phenomena. We have detected strong 6.4~keV emission in several giant molecular clouds, some of which were newly discovered by Suzaku. All the spectra exhibit large equivalent widths of 1-2~keV and absorption columns of $2-10times 10^{23}{rm H cm}^{-2}$. We found time variability of diffuse 6.4~keV emission in the Sgr B2 region comparing the maps and spectra obtained from 1994 to 2005 with ASCA, Chandra, XMM-Newton and Suzaku. We also report discovery of K$alpha$ lines of neutral argon, calcium, chrome, and manganese atoms in the Sgr~A region. We show that the equivalent width of the 6.4~keV emission line detected in X-ray faint region against the 6.4 keV-associated continuum (power-law component) is $sim 800 {rm eV}$. These features are naturally explained by the X-ray reflection nebula scenario rather than the low energy cosmic-ray electrons scenario. On the other hand, a 6.4~keV clump, G~0.162$-$0.217, discovered at the south end of the Radio Arc has a small equivalent width of 6.4~keV emission line of $sim200 {rm eV}$. The Radio Arc is a site of relativistic electrons. Thus, it is conceivable that the X-rays of G~0.162$-$0.217 are due to low energy cosmic-ray electrons
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا