ﻻ يوجد ملخص باللغة العربية
To investigate if magnetic fields are present in Wolf-Rayet stars, we selected a few stars in the Galaxy and one in the Large Magellanic Cloud (LMC). We acquired low-resolution spectropolarimetric observations with the ESO FORS2 instrument during two different observing runs. During the first run in visitor mode, we observed the LMC Wolf-Rayet star BAT99 7 and the stars WR6, WR7, WR18, and WR23 in our Galaxy. The second run in service mode was focused on monitoring the star WR6. Linear polarization was recorded immediately after the observations of circular polarization. During our visitor observing run, the magnetic field for the cyclically variable star WR6 was measured at a significance level of 3.3sigma (<B_z> = 258+-78G). Among the other targets, the highest value for the longitudinal magnetic field, <B_z> = 327+-141G, was measured in the LMC star BAT99 7. Spectropolarimetric monitoring of the star WR6 revealed a sinusoidal nature of the <B_z> variations with the known rotation period of 3.77d, significantly adding to the confidence in the detection. The presence of the rotation-modulated magnetic variability is also indicated in our frequency periodogram. The reported field magnitude suffers from significant systematic uncertainties at the factor 2 level, in addition to the quoted statistical uncertainties, owing to the theoretical approach used to characterize it. Linear polarization measurements showed no line effect in the stars, apart from WR6. BAT99 7, WR7, and WR,23 do not show variability of the linear polarization over two nights.
The Wolf-Rayet (WR) phenomenon is widespread in astronomy. It involves classical WRs, very massive stars (VMS), WR central stars of planetary nebula CSPN [WRs], and supernovae (SNe). But what is the root cause for a certain type of object to turn int
We report the first-ever discovery of an extragalactic Wolf-Rayet (WR)star with Spitzer. A new WR star in the Large Magellanic Cloud (LMC) was revealed via detection of its circumstellar shell using 24 {mu}m images obtained in the framework of the Sp
Wolf-Rayet stars are advanced evolutionary stages of massive stars. Despite their large mass-loss rates and high wind velocities, none of them display a bow shock, although a fraction of them are classified as runaway. Our 2.5-D numerical simulations
The envelopes of stars near the Eddington limit are prone to various instabilities. A high Eddington factor in connection with the Fe opacity peak leads to convective instability, and a corresponding envelope inflation may induce pulsational instabil
As part of a multi-year survey for Wolf-Rayet stars in the Magellanic Clouds, we have discovered a new type of Wolf-Rayet star with both strong emission and absorption. While one might initially classify these stars as WN3+O3V binaries based on their