ﻻ يوجد ملخص باللغة العربية
We consider Chern-Simons theory with complex gauge group and present a complete non-perturbative evaluation of the path integral (the partition function and certain expectation values of Wilson loops) on Seifert fibred 3-Manifolds. We use the method of Abelianisation. In certain cases the path integral can be seen to factorize neatly into holomorphic and anti-holomorphic parts. We obtain closed formulae of this factorization for the expectation values of torus knots.
We study Chern-Simons theory on 3-manifolds M that are circle-bundles over 2-dimensional orbifolds S by the method of Abelianisation. This method, which completely sidesteps the issue of having to integrate over the moduli space of non-Abelian flat c
We study resurgence properties of partition function of SU(2) Chern-Simons theory (WRT invariant) on closed three-manifolds. We check explicitly that in various examples Borel transforms of asymptotic expansions posses expected analytic properties. I
The vortex solutions of various classical planar field theories with (Abelian) Chern-Simons term are reviewed. Relativistic vortices, put forward by Paul and Khare, arise when the Abelian Higgs model is augmented with the Chern-Simons term. Adding a
We study the entanglement for a state on linked torus boundaries in $3d$ Chern-Simons theory with a generic gauge group and present the asymptotic bounds of Renyi entropy at two different limits: (i) large Chern-Simons coupling $k$, and (ii) large ra
Noncommutative Maxwell-Chern-Simons theory in 3-dimensions is defined in terms of star product and noncommutative fields. Seiberg-Witten map is employed to write it in terms of ordinary fields. A parent action is introduced and the dual action is der