ترغب بنشر مسار تعليمي؟ اضغط هنا

Cherenkov Radiation with Massive, CPT-violating Photons

105   0   0.0 ( 0 )
 نشر من قبل Robertus Potting
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The source of CPT-violation in the photon sector of the Standard Model Extension arises from a Chern-Simons-like contribution that involves a coupling to a fixed background vector field $k_{AF}^mu$. These Lorentz- and CPT-violating photons have well-known theoretical issues that arise from missing states at low momenta when $k_{AF}^mu$ is timelike. In order to make the theory consistent, a tiny mass for the photon can be introduced, well below current experimental bounds. The implementation of canonical quantization can then be implemented as in the CPT-preserving case by using the Stuckelberg mechanism. We explicitly construct a covariant basis of properly-normalized polarization vectors at fixed three-momentum satisfying the momentum space field equations, in terms of which the vector field can be expanded. As an application of the theory, we calculate the Cherenkov radiation rate for the case of purely timelike $k_{AF}^mu$, and find a radiation rate at high energies that has a contribution that does not depend on the mass used to regulate the photons.

قيم البحث

اقرأ أيضاً

We perform the covariant canonical quantization of the CPT- and Lorentz-symmetry-violating photon sector of the minimal Standard-Model Extension, which contains a general (timelike, lightlike, or spacelike) fixed background tensor $k_{AF}^mu$. Well-k nown stability issues, arising from complex-valued energy states, are solved by introducing a small photon mass, orders of magnitude below current experimental bounds. We explicitly construct a covariant basis of polarization vectors, in which the photon field can be expanded. We proceed to derive the Feynman propagator and show that the theory is microcausal. Despite the occurrence of negative energies and vacuum-Cherenkov radiation, we do not find any runaway stability issues, because the energy remains bounded from below. An important observation is that the ordering of the roots of the dispersion relations is the same in any observer frame, which allows for a frame-independent condition that selects the correct branch of the dispersion relation. This turns out to be critical for the consistency of the quantization. To our knowledge, this is the first system for which quantization has consistently been performed, in spite of the fact that the theory contains negative energies in some observer frames.
67 - M. Schreck 2019
The current article reviews results on vacuum Cherenkov radiation obtained for modified fermions. Two classes of processes can occur that have completely distinct characteristics. The first one does not include a spin flip of the radiating fermion, w hereas the second one does. A r{e}sum{e} will be given of the decay rates for these processes and their properties.
180 - Marco Schreck 2019
This work reviews our current understanding of Cherenkov-type processes in vacuum that may occur due to a possible violation of Lorentz invariance. The description of Lorentz violation is based on the Standard Model Extension (SME). To get an overvie w as general as possible, the most important findings for vacuum Cherenkov radiation in Minkowski spacetime are discussed. After doing so, special emphasis is put on gravitational Cherenkov radiation. For a better understanding, the essential properties of the gravitational SME are recalled in this context. The common grounds and differences of vacuum Cherenkov radiation in Minkowski spacetime and in the gravity sector are emphasized.
We review the status of CPT violation in the neutrino sector. Apart from LSND, current data favors three flavors of light stable neutrinos and antineutrinos, with both halves of the spectrum having one smaller mass splitting and one larger mass split ting. Oscillation data for the smaller splitting is consistent with CPT. For the larger splitting, current data favor an antineutrino mass-squared splitting that is an order of magnitude larger than the corresponding neutrino splitting, with the corresponding mixing angle less-than-maximal. This CPT-violating spectrum is driven by recent results from MINOS, but is consistent with other experiments if we ignore LSND. We describe an analysis technique which, together with MINOS running optimized for muon antineutrinos, should be able to conclusively confirm the CPT-violating spectrum proposed here, with as little as three times the current data set. If confirmed, the CPT-violating neutrino mass-squared difference would be an order of magnitude less than the current most-stringent upper bound on CPT violation for quarks and charged leptons.
Perturbative calculations in quantum field theory often require the regularization of infrared divergences. In quantum electrodynamics, such a regularization can for example be accomplished by a photon mass introduced via the Stueckelberg method. The present work extends this method to the QED limit of the Lorentz- and CPT-violating Standard-Model Extension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا