ﻻ يوجد ملخص باللغة العربية
This is the second paper of a series dedicated to the study of Poisson structures of compact types (PMCTs). In this paper, we focus on regular PMCTs, exhibiting a rich transverse geometry. We show that their leaf spaces are integral affine orbifolds. We prove that the cohomology class of the leafwise symplectic form varies linearly and that there is a distinguished polynomial function describing the leafwise sympletic volume. The leaf space of a PMCT carries a natural Duistermaat-Heckman measure and a Weyl type integration formula holds. We introduce the notion of a symplectic gerbe, and we show that they obstruct realizing PMCTs as the base of a symplectic complete isotropic fibration (a.k.a. a non-commutative integrable system).
This is the first in a series of papers dedicated to the study of Poisson manifolds of compact types (PMCTs). This notion encompasses several classes of Poisson manifolds defined via properties of their symplectic integrations. In this first paper we
For a Poisson manifold $M$ we develop systematic methods to compute its Picard group $Pic(M)$, i.e., its group of self Morita equivalences. We establish a precise relationship between $Pic(M)$ and the group of gauge transformations up to Poisson diff
We study holomorphic GL(2) and SL(2) geometries on compact complex manifolds. We show that a compact Kahler manifold of complex even dimension higher than two admitting a holomorphic GL(2)-geometry is covered by a compact complex torus. We classify c
We consider a class of compact homogeneous CR manifolds, that we call $mathfrak n$-reductive, which includes the orbits of minimal dimension of a compact Lie group $K_0$ in an algebraic homogeneous variety of its complexification $K$. For these manif
A {em 2-Riemannian manifold} is a differentiable manifold exhibiting a 2-inner product on each tangent space. We first study lower dimensional 2-Riemannian manifolds by giving necessary and sufficient conditions for flatness. Afterward we associate t