ﻻ يوجد ملخص باللغة العربية
There are deep, but hidden, geometric structures within jammed systems, associated with hidden symmetries. These can be revealed by repeated transformations under which these structures lead to fixed points. These geometric structures can be found in the Voronoi tesselation of space defined by the packing. In this paper we examine two iterative processes: maximum inscribed sphere (MIS) inversion and a real-space coarsening scheme. Under repeated iterations of the MIS inversion process we find invariant systems in which every particle is equal to the maximum inscribed sphere within its Voronoi cell. Using a real-space coarsening scheme we reveal behavior in geometric order parameters which is length-scale invariant.
Jammed systems all have a yield stress. Among these materials some have been shown to shear-band but it is as yet unclear why some materials develop shear-band and some others do not. In order to rationalize existing data concerning the flow characte
The mechanical and transport properties of jammed materials originate from an underlying per- colating network of contact forces between the grains. Using extensive simulations we investigate the force-percolation transition of this network, where tw
We consider the zero-energy deformations of periodic origami sheets with generic crease patterns. Using a mapping from the linear folding motions of such sheets to force-bearing modes in conjunction with the Maxwell-Calladine index theorem we derive
More than 30 years ago Edwards and co-authors proposed a model to describe the statistics of granular packings by an ensemble of equiprobable jammed states. Experimental tests of this model remained scarce so far. We introduce a simple system to anal
Granular matter at the jamming transition is poised on the brink of mechanical stability, and hence it is possible that these random systems have topologically protected surface phonons. Studying two model systems for jammed matter, we find states th