ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-Dimensional Alexandrov spaces with positive or nonnegative Ricci curvature

209   0   0.0 ( 0 )
 نشر من قبل Fernando Galaz-Garcia
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study closed three-dimensional Alexandrov spaces with a lower Ricci curvature bound in the $mathsf{CD}^*(K,N)$ sense, focusing our attention on those with positive or nonnegative Ricci curvature. First, we show that a closed three-dimensional $mathsf{CD}^*(2,3)$-Alexandrov space must be homeomorphic to a spherical space form or to the suspension of $mathbb{R}P^2$. We then classify closed three-dimensional $mathsf{CD}^*(0,3)$-Alexandrov spaces.



قيم البحث

اقرأ أيضاً

In this paper, we introduce a new notion for lower bounds of Ricci curvature on Alexandrov spaces, and extend Cheeger-Gromoll splitting theorem and Chengs maximal diameter theorem to Alexandrov spaces under this Ricci curvature condition.
Recently, in [49], a new definition for lower Ricci curvature bounds on Alexandrov spaces was introduced by the authors. In this article, we extend our research to summarize the geometric and analytic results under this Ricci condition. In particular , two new results, the rigidity result of Bishop-Gromov volume comparison and Lipschitz continuity of heat kernel, are obtained.
116 - Huihong Jiang , Yi-Hu Yang 2019
In a previous paper, we constructed complete manifolds of positive Ricci curvature with quadratically asymptotically nonnegative curvature and infinite topological type but dimension $ge 6$. The purpose of the present paper is to use a different way to exhibit a family of complete $I$-dimensinal ($Ige5$) Riemannian manifolds of positive Ricci curvature, quadratically asymptotically nonnegative sectional curvature, and certain infinite Betti number $b_j$ ($2le jle I-2$).
91 - Lei Ni , Qingsong Wang , 2018
In this paper we study the class of compact Kahler manifolds with positive orthogonal Ricci curvature: $Ric^perp>0$. First we illustrate examples of Kahler manifolds with $Ric^perp>0$ on Kahler C-spaces, and construct ones on certain projectivized ve ctor bundles. These examples show the abundance of Kahler manifolds which admit metrics of $Ric^perp>0$. Secondly we prove some (algebraic) geometric consequences of the condition $Ric^perp>0$ to illustrate that the condition is also quite restrictive. Finally this last point is made evident with a classification result in dimension three and a partial classification in dimension four.
88 - Jian Ge , Nan Li 2020
In this paper we discuss the sufficient and necessary conditions for multiple Alexandrov spaces being glued to an Alexandrov space. We propose a Gluing Conjecture, which says that the finite gluing of Alexandrov spaces is an Alexandrov space, if and only if the gluing is by path isometry along the boundaries and the tangent cones are glued to Alexandrov spaces. This generalizes Petrunins Gluing Theorem. Under the assumptions of the Gluing Conjecture, we classify the $2$-point gluing over $(n-1,epsilon)$-regular points as local separable gluing and the gluing near un-glued $(n-1,epsilon)$-regular points as local involutional gluing. We also prove that the Gluing Conjecture is true if the complement of $(n-1,epsilon)$-regular points is discrete in the glued boundary. In particular, this implies the general Gluing Conjecture as well as a new Gluing Theorem in dimension 2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا