ترغب بنشر مسار تعليمي؟ اضغط هنا

Microwave-induced resistance oscillations as a classical memory effect

102   0   0.0 ( 0 )
 نشر من قبل M. I. Dyakonov
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By numerical simulations and analytical studies, we show that the phenomenon of microwave-induced resistance oscillations can be understood as a classical memory effect caused by re-collisions of electrons with scattering centers after a cyclotron period. We develop a Drude-like approach to magneto-transport in presence of a microwave field, taking account of memory effects, and find an excellent agreement between numerical and analytical results, as well as a qualitative agreement with experiment.



قيم البحث

اقرأ أيضاً

319 - I.A. Dmitriev , A.D. Mirlin , 2007
We develop a systematic theory of microwave-induced oscillations in magnetoresistivity of a 2D electron gas in the vicinity of fractional harmonics of the cyclotron resonance, observed in recent experiments. We show that in the limit of well-separate d Landau levels the effect is dominated by the multiphoton inelastic mechanism. At moderate magnetic field, two single-photon mechanisms become important. One of them is due to resonant series of multiple single-photon transitions, while the other originates from microwave-induced sidebands in the density of states of disorder-broadened Landau levels.
175 - I.A. Dmitriev , A.D. Mirlin , 2007
We develop a systematic theory of microwave-induced oscillations in magnetoresistivity of a 2D electron gas in the vicinity of fractional harmonics of the cyclotron resonance, observed in recent experiments. We show that in the limit of well-separate d Landau levels the effect is dominated by a change of the distribution function induced by multiphoton processes. At moderate magnetic field, a single-photon mechanism originating from the microwave-induced sidebands in the density of states of disorder-broadened Landau levels becomes important.
We report on microwave-induced resistance oscillations (MIROs) in a tunable-density 30-nm-wide GaAs/AlGaAs quantum well. We find that the MIRO amplitude increases dramatically with carrier density. Our analysis shows that the anticipated increase in the effective microwave power and quantum lifetime with density is not sufficient to explain the observed growth of the amplitude. We further observe that the fundamental oscillation extrema move towards cyclotron resonance with increasing density, which also contradicts theoretical predictions. These findings reveal that the density dependence is not properly captured by existing theories, calling for further studies.
The frequency dependence of microwave-induced resistance oscillations (MIROs) has been studied experimentally in high-mobility electron GaAs/AlGaAs structures to explore the limits at which these oscillations can be observed. It is found that in dc t ransport experiments at frequencies above 120 GHz, MIROs start to quench, while above 230 GHz, they completely disappear. The results will need to be understood theoretically but are qualitatively discussed within a model in which forced electronic charge oscillations (plasmons) play an intermediate role in the interaction process between the radiation and the single-particle electron excitations between Landau levels.
125 - M. Yang , O. Couturaud , W. Desrat 2016
We report on the stability of the quantum Hall plateau in wide Hall bars made from a chemically gated graphene film grown on SiC. The $ u=2$ quantized plateau appears from fields $B simeq 5$ T and persists up to $B simeq 80$ T. At high current densit y, in the breakdown regime, the longitudinal resistance oscillates with a $1/B$ periodicity and an anomalous phase, which we relate to the presence of additional electron reservoirs. The high field experimental data suggest that these reservoirs induce a continuous increase of the carrier density up to the highest available magnetic field, thus enlarging the quantum plateaus. These in-plane inhomogeneities, in the form of high carrier density graphene pockets, modulate the quantum Hall effect breakdown and decrease the breakdown current.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا