ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact solution of equations for proton localization in neutron star matter

125   0   0.0 ( 0 )
 نشر من قبل Sebastian Kubis
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The rigorous treatment of proton localization phenomenon in asymmetric nuclear matter is presented. The solution of proton wave function and neutron background distribution is found by the use of the extended Thomas-Fermi approach. The minimum of energy is obtained in the Wigner- Seitz approximation of spherically symmetric cell. The analysis of three different nuclear models suggests that the proton localization is likely to take place in the interior of neutron star.

قيم البحث

اقرأ أيضاً

79 - W. Zuo , Z. H. Li , G. C. Lu 2004
We investigate the effect of a microscopic three-body force on the proton and neutron superfluidity in the $^1S_0$ channel in $beta$-stable neutron star matter. It is found that the three-body force has only a small effect on the neutron $^1S_0$ pair ing gap, but it suppresses strongly the proton $^1S_0$ superfluidity in $beta$-stable neutron star matter.
203 - Wenmei Guo , J. M. Dong , X. Shang 2018
The onset of 1S0 proton spin-singlet pairing in neutron-star matter is studied in the framework of the BCS theory including medium polarization effects. The strong three-body coupling of the diproton pairs with the dense neutron environment and the s elf-energy effects severely reduce the gap magnitude, so to reshape the scenario of the proton superfluid phase inside the star. The vertex corrections due to the medium polarization are attractive in all isospin-asymmetry range at low density and tend to favor the pairing in that channel. However quantitative estimates of their effect on the energy gap do not give significant changes. Implications of the new scenario on the role of pairing in neutron-star cooling is briefly discussed.
349 - S. Huth , P. T. H. Pang , I. Tews 2021
Interpreting high-energy, astrophysical phenomena, such as supernova explosions or neutron-star collisions, requires a robust understanding of matter at supranuclear densities. However, our knowledge about dense matter explored in the cores of neutro n stars remains limited. Fortunately, dense matter is not only probed in astrophysical observations, but also in terrestrial heavy-ion collision experiments. In this work, we use Bayesian inference to combine data from astrophysical multi-messenger observations of neutron stars and from heavy-ion collisions of gold nuclei at relativistic energies with microscopic nuclear theory calculations to improve our understanding of dense matter. We find that the inclusion of heavy-ion collision data indicates an increase in the pressure in dense matter relative to previous analyses, shifting neutron-star radii towards larger values, consistent with recent NICER observations. Our findings show that constraints from heavy-ion collision experiments show a remarkable consistency with multi-messenger observations and provide complementary information on nuclear matter at intermediate densities. This work combines nuclear theory, nuclear experiment, and astrophysical observations, and shows how joint analyses can shed light on the properties of neutron-rich supranuclear matter over the density range probed in neutron stars.
The self-energy effect on the neutron-proton (np) pairing gap is investigated up to the third order within the framework of the extend Bruecker-Hartree-Fock (BHF) approach combined with the BCS theory. The self-energy up to the second-order contribut ion turns out to reduce strongly the effective energy gap, while the emph{renormalization} term enhances it significantly. In addition, the effect of the three-body force on the np pairing gap is shown to be negligible. To connect the present results with the np pairing in finite nuclei, an effective density-dependent zero-range pairing force is established with the parameters calibrated to the microscopically calculated energy gap.
The thermal evolution of neuron stars depends on the elementary excitations affecting the stellar matter. In particular, the low-energy excitations, whose energy is proportional to the transfered momentum, can play a major role in the emission and pr opagation of neutrinos. In this paper, we focus on the density modes associated with the proton component in the homogeneous matter of the outer core of neutron stars (at density between one and three times the nuclear saturation density, where the baryonic constituants are expected to be neutrons and protons). In this region, it is predicted that the protons are superconductor. We study the respective roles of the proton pairing and Coulomb interaction in determining the properties of the modes associated with the proton component. This study is performed in the framework of the Random Phase Approximation, generalized in order to describe the response of a superfluid system.The formalism we use ensures that the Generalized Wards Identities are satisfied. An important conclusion of this work is the presence of a pseudo-Goldstone mode associated with the proton superconductor in neutron-star matter. Indeed, the Goldstone mode, which characterizes a pure superfluid, is suppressed in usual superconductors due to the long-range Coulomb interaction, which only allows a plasmon mode. However, for the proton component of stellar matter, the Coulomb field is screened by the electrons and a pseudo-Goldstone mode occurs, with a velocity increased by the Coulomb interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا