ﻻ يوجد ملخص باللغة العربية
The dependence on the structure functions and Z, N numbers of the nuclear binding energy is investigated within the inverse problem(IP) approach. This approach allows us to infer the underlying model parameters from experimental observation, rather than to predict the observations from the model parameters. The IP was formulated for the numerical generalization of the semi-empirical mass formula of BW. It was solved in step by step way based on the AME2012 nuclear database. The established parametrization describes the measured nuclear masses of 2564 isotopes with a maximum deviation less than 2.6 MeV, starting from the number of protons and number of neutrons equal to 1. The set of parameters ${a_{i}}$, $i=1,dots, {mathcal{N}}_{rm{param}}$ of our fit represent the solution of an overdetermined system of nonlinear equations, which represent equalities between the binding energy $E_{B,j}^{rm{Expt}}(A,Z)$ and its model $E_{B,j}^{rm{Th}}(A,Z,{a_{i}})$, where $j$ is the index of the given isotope. The solution of the overdetermined system of nonlinear equations has been obtained with the help of the Aleksandrovs auto-regularization method of Gauss-Newton(GN) type for ill-posed problems. The efficiency of the above methods was checked by comparing relevant results with the results obtained independently. The explicit form of unknown functions was discovered in a step-by-step way using the modified least $chi^{2}$ procedure, that realized in the algorithms which were developed by Aleksandrov to solve nonlinear systems of equations via the GN method, lets us to choose between two functions with same $chi^{2}$ the better one. In the obtained generalized model the corrections to the binding energy depend on nine proton (2, 8, 14, 20, 28, 50, 82, 108, 124) and ten neutron (2, 8, 14, 20, 28, 50, 82, 124, 152, 202) magic numbers as well on the asymptotic boundaries of their influence.
The von Weizs{a}cker theorem states that every sequence of nonnegative random variables has a subsequence which is Ces`{a}ro convergent to a nonnegative random variable which might be infinite. The goal of this note is to provide a description of the
We formalized the nuclear mass problem in the inverse problem framework. This approach allows us to infer the underlying model parameters from experimental observation, rather than to predict the observations from the model parameters. The inverse pr
Nuclear Density Functional Theory (DFT) plays a prominent role in the understanding of nuclear structure, being the approach with the widest range of applications. Hohenberg and Kohn theorems warrant the existence of a nuclear Energy Density Function
The coupled-cluster wave function factorizes to a very good approximation into a product of an intrinsic wave function and a Gaussian for the center-of-mass coordinate. The width of the Gaussian is in general not identical to the oscillator length of
In this work, we propose a method to show the correspondence between hadron and its quark component nuclear modification factors. A parton and hadron cascade model PACIAE based on the PYTHIA6.4 is employed to calculate the hadron and its quark compon