ﻻ يوجد ملخص باللغة العربية
Nuclear Density Functional Theory (DFT) plays a prominent role in the understanding of nuclear structure, being the approach with the widest range of applications. Hohenberg and Kohn theorems warrant the existence of a nuclear Energy Density Functional (EDF), yet its form is unknown. Current efforts to build a nuclear EDF are hindered by the lack of a strategy for systematic improvement. In this context, alternative approaches should be pursued and, so far, an unexplored avenue is that related to the inverse DFT problem. DFT is based on the one-to-one correspondence between Kohn-Sham (KS) potentials and densities. The exact EDF produces the exact density, so that from the knowledge of experimental or {it ab initio} densities one may deduce useful information through reverse engineering. The idea has already been proven to be useful in the case of electronic systems. The general problem should be dealt with in steps, and the objective of the present work is to focus on testing algorithms to extract the Kohn-Sham potential within the simplest ansatz from the knowledge of the experimental neutron and proton densities. We conclude that while robust algorithms exist, the experimental densities present some critical aspects. Finally, we provide some perspectives for future works.
Accurately describing excited states within Kohn-Sham (KS) density functional theory (DFT), particularly those which induce ionization and charge transfer, remains a great challenge. Common exchange-correlation (xc) approximations are unreliable for
The algebraic molecular model is used in $^{12}$C to construct densities and transition densities connecting low-lying states of the rotovibrational spectrum, first and foremost those belonging to the rotational bands based on the ground and the Hoyl
We construct exact Kohn-Sham potentials for the ensemble density-functional theory (EDFT) from the ground and excited states of helium. The exchange-correlation (XC) potential is compared with the quasi-local-density approximation and both single det
Knowledge of exact properties of the exchange-correlation (xc) functional is important for improving the approximations made within density functional theory. Features such as steps in the exact xc potential are known to be necessary for yielding acc
The beam energy dependence of $v_4$ (the quadrupole moment of the transverse radial flow) is sensitive to the nuclear equation of state (EoS) in mid-central Au + Au collisions at the energy range of $3 < sqrt{s_{NN}} < 30$ GeV, which is investigated