ترغب بنشر مسار تعليمي؟ اضغط هنا

Shielding electrostatic fields in polar semiconductor nanostructures

136   0   0.0 ( 0 )
 نشر من قبل Gerald H\\\"onig
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern opto-electronic devices are based on semiconductor heterostructures employing the process of electron-hole pair annihilation. In particular polar materials enable a variety of classic and even quantum light sources, whose on-going optimisation endeavours challenge generations of researchers. However, the key challenge - the inherent electric crystal polarisation of such materials - remains unsolved and deteriorates the electron-hole pair annihilation rate. Here, our approach introduces a sequence of reverse interfaces to compensate these polarisation effects, while the polar, natural crystal growth direction is maintained provoking a boost in device performance. Former research approaches like growth on less-polar crystal planes or even the stabilization of unnatural phases never reached industrial maturity. In contrast, our solution allows the adaptation of all established industrial processes, while the polarisation becomes adjustable; even across zero. Hence, our approach marks the onset of an entire class of ultra-fast and efficient devices based on any polar material.



قيم البحث

اقرأ أيضاً

Pyramidal quantum dots (QDs) grown in inverted recesses have demonstrated over the years an extraordinary uniformity, high spectral purity and strong design versatility. We discuss recent results, also in view of the Stranski-Krastanow competition an d give evidence for strong perspectives in quantum information applications for this system. We examine the possibility of generating entangled and indistinguishable photons, together with the need for the implementation of a, regrettably still missing, strategy for electrical control.
We report the design and development of a piezoelectric sample rotation system, and its integration into an Oxford Instruments Kelvinox 100 dilution refrigerator, for orientation-dependent studies of quantum transport in semiconductor nanodevices at millikelvin temperatures in magnetic fields up to 10T. Our apparatus allows for continuous in situ rotation of a device through >100deg in two possible configurations. The first enables rotation of the field within the plane of the device, and the second allows the field to be rotated from in-plane to perpendicular to the device plane. An integrated angle sensor coupled with a closed-loop feedback system allows the device orientation to be known to within +/-0.03deg whilst maintaining the sample temperature below 100mK.
We present experimental coherent two-dimensional Fourier transform spectra of the exciton resonances in semiconductor quantum wells for a pulse sequence that isolates two-quantum coherences. By measuring the real part of the spectra, we can determine that the spectra are dominated by two quantum coherences due to many-body interactions, not bound biexcitons. Simulations performed using dynamics controlled truncation agree well with the experiments.
This paper presents an overview of scanning-gate microscopy applied to the imaging of electron transport through buried semiconductor nanostructures. After a brief description of the technique and of its possible artifacts, we give a summary of some of its most instructive achievements found in the literature and we present an updated review of our own research. It focuses on the imaging of GaInAs-based quantum rings both in the low magnetic field Aharonov-Bohm regime and in the high-field quantum Hall regime. In all of the given examples, we emphasize how a local-probe approach is able to shed new, or complementary, light on transport phenomena which are usually studied by means of macroscopic conductance measurements.
We investigate the dynamic nuclear polarization from the hyperfine interaction between nonequilibrium electronic spins and nuclear spins coupled to them in semiconductor nanostructures. We derive the time and position dependence of the induced nuclea r spin polarization and dipolar magnetic fields. In GaAs/AlGaAs parabolic quantum wells the nuclear spin polarization can be as high as 80% and the induced nuclear magnetic fields can approach a few gauss with an associated nuclear resonance shift of the order of kHz when the electronic system is 100% spin polarized. These fields and shifts can be tuned using small electric fields. We discuss the implications of such control for optical nuclear magnetic resonance experiments in low-dimensional semiconductor nanostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا