ﻻ يوجد ملخص باللغة العربية
We demonstrated a flexible thermoelectric (TE) sheet based on the longitudinal spin Seebeck effect (LSSE) that is especially suitable for heat-flow sensing applications. This TE sheet contained a Ni0.2Zn0.3Fe2.5O4 film which was formed on a flexible plastic sheet using a spray-coating method known as ferrite plating. The experimental results suggest that the ferrite-plated film, which has a columnar crystal structure aligned perpendicular to the film plane, functions as a unique one-dimensional spin-current conductor suitable for bendable LSSE-based sensors.
We evaluated the thermoelectric properties of longitudinal spin Seebeck devices by using ten different transition metals (TMs). Both the intensity and sign of spin Seebeck coefficients were noticeably dependent on the degree of the inverse spin Hall
We report the experimental observation of the spin Seebeck effect (SSE) in Ag/CoFe noble metal/magnetic metal bilayers with a longitudinal structure. Thermal voltages jointly generated by the anomalous Nernst effect (ANE) and the SSE were detected ac
We investigate the inverse spin Hall voltage of a 10nm thin Pt strip deposited on the magnetic insulators Y3Fe5O12 (YIG) and NiFe2O4 (NFO) with a temperature gradient in the film plane. We observe characteristics typical of the spin Seebeck effect, a
The generation, control, and detection of spin currents in solid-state devices are critical for Joule-heating minimization, spin-based computation, and electrical energy generation from thermal gradients. Although incorporation of spin functionality
We performed a numerical analysis of the material parameters required for realizing a heat flux sensor exploiting the anomalous Nernst effect (ANE). The results showed the importance of high thermopower of ANE ($S_{text{ANE}}$) and small saturation m