ترغب بنشر مسار تعليمي؟ اضغط هنا

Longitudinal spin Seebeck effect contribution in transverse spin Seebeck effect experiments in Pt/YIG and Pt/NFO

502   0   0.0 ( 0 )
 نشر من قبل Daniel Meier
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the inverse spin Hall voltage of a 10nm thin Pt strip deposited on the magnetic insulators Y3Fe5O12 (YIG) and NiFe2O4 (NFO) with a temperature gradient in the film plane. We observe characteristics typical of the spin Seebeck effect, although we do not observe a change of sign of the voltage at the Pt strip when it is moved from hot to cold side, which is believed to be the most striking feature of the transverse spin Seebeck effect. Therefore, we relate the observed voltages to the longitudinal spin Seebeck effect generated by a parasitic out-of-plane temperature gradient, which can be simulated by contact tips of different material and heat conductivities and by tip heating. This work gives new insights into the interpretation of transverse spin Seebeck effect experiments, which are still under discussion.



قيم البحث

اقرأ أيضاً

In this work we investigated thin films of the ferrimagnetic insulators YIG and NFO capped with thin Pt layers in terms of the longitudinal spin Seebeck effect (LSSE). The electric response detected in the Pt layer under an out-of-plane temperature g radient can be interpreted as a pure spin current converted into a charge current via the inverse spin Hall effect. Typically, the transverse voltage is the quantity investigated in LSSE measurements (in the range of mu V). Here, we present the directly detected DC current (in the range of nA) as an alternative quantity. Furthermore, we investigate the resistance of the Pt layer in the LSSE configuration. We found an influence of the test current on the resistance. The typical shape of the LSSE curve varies for increasing test currents.
We report the nonlocal spin Seebeck effect (nlSSE) in a lateral configuration of Pt/Y$_3$Fe$_5$O$_{12}$(YIG)/Pt systems as a function of the magnetic field $B$ (up to 10 T) at various temperatures $T$ (3 K < $T$ < 300 K). The nlSSE voltage decreases with increasing $B$ in a linear regime with respect to the input power (the applied charge-current squared $I^2$). The reduction of the nlSSE becomes substantial when the Zeeman energy exceeds thermal energy at low temperatures, which can be interpreted as freeze-out of magnons relevant for the nlSSE. Furthermore, we found the non-linear power dependence of the nlSSE with increasing $I$ at low temperatures ($T$ < 20 K), at which the $B$-induced signal reduction becomes less visible. Our experimental results suggest that in the non-linear regime high-energy magnons are over populated than those expected from the thermal energy. We also estimate the magnon spin diffusion length as functions of $B$ and $T$.
For longitudinal spin Seebeck effect (LSSE) devices, a multilayer structure comprising ferromagnetic and nonmagnetic layers is expected to improve their thermoelectric power. In this study, we developed the fabrication method for alternately stacked yttrium-iron-garnet (YIG)/Pt multilayer films on a gadolinium gallium garnet (GGG) (110) substrate, GGG/[YIG(49 nm)/Pt(4 nm)]$_n$ ($n =$ 1 - 5) based on room-temperature sputtering and $ex$-$situ$ post-annealing method and we evaluated their structural and LSSE properties. The fabricated [YIG/Pt]$_n$ samples show flat YIG/Pt interfaces and almost identical saturation magnetization $M_{rm s}$, although they contain polycrystalline YIG layers on Pt layers as well as single-crystalline YIG layers on GGG. In the samples, we observed clear LSSE signals and found that the LSSE thermoelectric power factor (PF) increases monotonically with increasing $n$; the PF of the [YIG/Pt]$_5$ sample is enhanced by a factor of $sim 28$ compared to that of [YIG/Pt]$_1$. This work may provide a guideline for developing future multilayerbased LSSE devices.
We demonstrate an instrument for time-resolved magnetic imaging that is highly sensitive to the in-plane magnetization state and dynamics of thin-film bilayers of yttrium iron garnet (Y3Fe5O12,YIG)/Pt: the time-resolved longitudinal spin Seebeck (TRL SSE) effect microscope. We detect the local, in-plane magnetic orientation within the YIG by focusing a picosecond laser to generate thermally-driven spin current from the YIG into the Pt by the spin Seebeck effect, and then use the inverse spin Hall effect in the Pt to transduce this spin current to an output voltage. To establish the time resolution of TRLSSE, we show that pulsed optical heating of patterned YIG (20 nm)/Pt(6 nm)/Ru (2 nm) wires generates a magnetization-dependent voltage pulse of less than 100 ps. We demonstrate TRLSSE microscopy to image both static magnetic structure and gigahertz-frequency magnetic resonance dynamics with sub-micron spatial resolution and a sensitivity to magnetic orientation below 0.3$^{circ}/sqrt{text{Hz}}$ in ultrathin YIG.
Transverse thermoelectric devices produce electric fields perpendicular to an incident heat flux. Classically, this process is driven by the Nernst effect in bulk solids, wherein a magnetic field generates a Lorentz force on thermally excited electro ns. The spin Seebeck effect (SSE) also produces magnetization-dependent transverse electric fields. SSE is traditionally observed in thin metallic films deposited on electrically insulating ferromagnets, but the films high resistance limits thermoelectric conversion efficiency. Combining Nernst and SSE in bulk materials would enable devices with simultaneously large transverse thermopower and low electrical resistance. Here we demonstrate experimentally this is possible in composites of conducting ferromagnets (Ni or MnBi) containing metallic nanoparticles with strong spin-orbit interactions (Pt or Au). These materials display positive shifts in transverse thermopower attributable to inverse spin Hall electric fields in the nanoparticles. This more than doubles the power output of the Ni-Pt materials, establishing proof-of-principle that SSE persists in bulk nanocomposites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا