ترغب بنشر مسار تعليمي؟ اضغط هنا

The radio environment of the 21 Centimeter Array: RFI detection and mitigation

99   0   0.0 ( 0 )
 نشر من قبل Qian Zheng
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Detection and mitigation of radio frequency interference (RFI) is the first and also the key step for data processing in radio observations, especially for ongoing low frequency radio experiments towards the detection of the cosmic dawn and epoch of reionization (EoR). In this paper we demonstrate the technique and efficiency of RFI identification and mitigation for the 21 Centimeter Array (21CMA), a radio interferometer dedicated to the statistical measurement of EoR. For terrestrial, man-made RFI, we concentrate mainly on a statistical approach by identifying and then excising non-Gaussian signatures, in the sense that the extremely weak cosmic signal is actually buried under thermal and therefore Gaussian noise. We also introduce the so-called visibility correlation coefficient instead of conventional visibility, which allows a further suppression of rapidly time-varying RFI. Finally, we briefly discuss removals of the sky RFI, the leakage of sidelobes from off-field strong radio sources with time-invariant power and a featureless spectrum. It turns out that state of the art technique should allow us to detect and mitigate RFI to a satisfactory level in present low frequency interferometer observations such as those acquired with the 21CMA, and the accuracy and efficiency can be greatly improved with the employment of low-cost, high-speed computing facilities for data acquisition and processing.

قيم البحث

اقرأ أيضاً

The Murchison Widefield Array (MWA) is a new low-frequency interferometric radio telescope built in Western Australia at one of the locations of the future Square Kilometre Array (SKA). We describe the automated radio-frequency interference (RFI) det ection strategy implemented for the MWA, which is based on the AOFlagger platform, and present 72-231-MHz RFI statistics from 10 observing nights. RFI detection removes 1.1% of the data. RFI from digital TV (DTV) is observed 3% of the time due to occasional ionospheric or atmospheric propagation. After RFI detection and excision, almost all data can be calibrated and imaged without further RFI mitigation efforts, including observations within the FM and DTV bands. The results are compared to a previously published Low-Frequency Array (LOFAR) RFI survey. The remote location of the MWA results in a substantially cleaner RFI environment compared to LOFARs radio environment, but adequate detection of RFI is still required before data can be analysed. We include specific recommendations designed to make the SKA more robust to RFI, including: the availability of sufficient computing power for RFI detection; accounting for RFI in the receiver design; a smooth band-pass response; and the capability of RFI detection at high time and frequency resolution (second and kHz-scale respectively).
We present a catalog of 624 radio sources detected around the North Celestial Pole (NCP) with the 21 Centimeter Array (21CMA), a radio interferometer dedicated to the statistical measurement of the epoch of reionization (EoR). The data are taken from a 12 h observation made on 2013 April 13, with a frequency coverage from 75 to 175 MHz and an angular resolution of ~ 4 arcmin. The catalog includes flux densities at eight sub-bands across the 21CMA bandwidth and provides the in-band spectral indices for the detected sources. To reduce the complexity of interferometric imaging from the so-called w term and ionospheric effects, the present analysis are restricted to the east-west baselines within 1500 m only. The 624 radio sources are found within 5 degrees around the NCP down to ~ 0.1 Jy. Our source counts are compared, and also exhibit a good agreement, with deep low-frequency observations made recently with the GMRT and MWA. In particular, for fainter radio sources below ~ 1 Jy, we find a flattening trend of source counts towards lower frequencies. While the thermal noise (~0.4 mJy) is well controlled to below the confusion limit, the dynamical range (~10^4) and sensitivity of current 21CMA imaging is largely limited by calibration and deconvolution errors, especially the grating lobes of very bright sources, such as 3C061.1, in the NCP field which result from the regular spacings of the 21CMA. We note that particular attention should be paid to the extended sources, and their modeling and removals may constitute a large technical challenge for current EoR experiments. Our analysis may serve as a useful guide to design of next generation low-frequency interferometers like the Square Kilometre Array.
65 - Tim Huege 2019
The Auger Engineering Radio Array (AERA) complements the Pierre Auger Observatory with 150 radio-antenna stations measuring in the frequency range from 30 to 80 MHz. With an instrumented area of 17 km$^2$, the array constitutes the largest cosmic-ray radio detector built to date, allowing us to do multi-hybrid measurements of cosmic rays in the energy range of 10$^{17}$ eV up to several 10$^{18}$ eV. We give an overview of AERA results and discuss the significance of radio detection for the validation of the energy scale of cosmic-ray detectors as well as for mass-composition measurements.
The Packed Ultra-wideband Mapping Array (PUMA) is a proposed low-resolution transit interferometric radio telescope operating over the frequency range 200 - 1100MHz. Its rich science portfolio will include measuring structure in the universe from red shift z = 0.3 to 6 using 21cm intensity mapping, detecting one million fast radio bursts, and monitoring thousands of pulsars. It will allow PUMA to advance science in three different areas of physics (the physics of dark energy, the physics of cosmic inflation and time-domain astrophysics). This document is a response to a request for information (RFI) by the Panel on Radio, Millimeter, and Submillimeter Observations from the Ground (RMS) of the Decadal Survey on Astronomy and Astrophysics 2020. We present the science case of PUMA, the development path and major risks to the project.
Aims: This paper discusses the spectral occupancy for performing radio astronomy with the Low-Frequency Array (LOFAR), with a focus on imaging observations. Methods: We have analysed the radio-frequency interference (RFI) situation in two 24-h survey s with Dutch LOFAR stations, covering 30-78 MHz with low-band antennas and 115-163 MHz with high-band antennas. This is a subset of the full frequency range of LOFAR. The surveys have been observed with a 0.76 kHz / 1 s resolution. Results: We measured the RFI occupancy in the low and high frequency sets to be 1.8% and 3.2% respectively. These values are found to be representative values for the LOFAR radio environment. Between day and night, there is no significant difference in the radio environment. We find that lowering the current observational time and frequency resolutions of LOFAR results in a slight loss of flagging accuracy. At LOFARs nominal resolution of 0.76 kHz and 1 s, the false-positives rate is about 0.5%. This rate increases approximately linearly when decreasing the data frequency resolution. Conclusions: Currently, by using an automated RFI detection strategy, the LOFAR radio environment poses no perceivable problems for sensitive observing. It remains to be seen if this is still true for very deep observations that integrate over tens of nights, but the situation looks promising. Reasons for the low impact of RFI are the high spectral and time resolution of LOFAR; accurate detection methods; strong filters and high receiver linearity; and the proximity of the antennas to the ground. We discuss some strategies that can be used once low-level RFI starts to become apparent. It is important that the frequency range of LOFAR remains free of broadband interference, such as DAB stations and windmills.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا