ﻻ يوجد ملخص باللغة العربية
Optical fibres have transformed the way people interact with the world and now permeate many areas of science. Optical fibres are traditionally thought of as insensitive to magnetic fields, however many application areas from mining to biomedicine would benefit from fibre-based remote magnetometry devices. In this work, we realise such a device by embedding nanoscale magnetic sensors into tellurite glass fibres. Remote magnetometry is performed on magnetically active defect centres in nanodiamonds embedded into the glass matrix. Standard optical magnetometry techniques are applied to initialize and detect local magnetic field changes with a measured sensitivity of 26 micron Tesla/square root(Hz). Our approach utilizes straight-forward optical excitation, simple focusing elements, and low power components. We demonstrate remote magnetometry by direct reporting of the magnetic ground states of nitrogen-vacancy defect centres in the optical fibres. In addition, we present and describe theoretically an all-optical technique that is ideally suited to remote fibre-based sensing. The implications of our results broaden the applications of optical fibres, which now have the potential to underpin a new generation of medical magneto-endoscopes and remote mining sensors.
Tellurite glass fibers with embedded nanodiamond are attractive materials for quantum photonics applications. Reducing the loss of these fibers in the 600-800 nm wavelength range of nanodiamond fluorescence is essential to exploit the unique properti
Tellurite glass fibers with embedded nanodiamond are attractive materials for quantum photonic applications. Reducing the loss of these fibers in the 600-800 nm wavelength range of nanodiamond fluorescence is essential to exploit the unique propertie
Nanoscale control over the second-order photon correlation function $g^{(2)}(tau)$ is critical to emerging research in nonlinear nanophotonics and integrated quantum information science. Here we report on quasiparticle control of photon bunching with
Two novel properties, unique for semiconductors: a negative electron affinity [1-2], and a high p-type surface electrical conductivity [3-4], were discovered in diamond at the end of the last century. Both properties appear when the diamond surface i
Magnetic resonance of sodium fluorescence is studied with varying laser intensity, duty cycle, and field strength. A magnetometer based on sodium vapor cell filled with He buffer gas is demonstrated, which uses a single amplitude-modulated laser beam