ﻻ يوجد ملخص باللغة العربية
Nonspherical mass motions are a generic feature of core-collapse supernovae, and hydrodynamic instabilities play a crucial role for the explosion mechanism. First successful neutrino-driven explosions could be obtained with self-consistent, first-principle simulations in three spatial dimensions (3D). But 3D models tend to be less prone to explosion than corresponding axisymmetric (2D) ones. This has been explained by 3D turbulence leading to energy cascading from large to small spatial scales, inversely to the 2D case, thus disfavoring the growth of buoyant plumes on the largest scales. Unless the inertia to explode simply reflects a lack of sufficient resolution in relevant regions, it suggests that some important aspect may still be missing for robust and sufficiently energetic neutrino-powered explosions. Such deficits could be associated with progenitor properties like rotation, magnetic fields or pre-collapse perturbations, or with microphysics that could lead to an enhancement of neutrino heating behind the shock. 3D simulations have also revealed new phenomena that are not present in 2D, for example spiral modes of the standing accretion shock instability (SASI) and a stunning dipolar lepton-emission self-sustained asymmetry (LESA). Both impose time- and direction-dependent variations on the detectable neutrino signal. The understanding of these effects and of their consequences is still in its infancy.
We develop a numerical code to calculate the neutrino transfer with multi-energy and multi-angle in three dimensions (3D) for the study of core-collapse supernovae. The numerical code solves the Boltzmann equations for neutrino distributions by the d
The importance of detecting neutrinos from a Milky Way core-collapse supernova is well known. An under-studied phase is proto-neutron star cooling. For SN 1987A, this seemingly began at about 2 s, and is thus probed by only 6 of the 19 events (and on
Knowledge of the progenitors of core-collapse supernovae is a fundamental component in understanding the explosions. The recent progress in finding such stars is reviewed. The minimum initial mass that can produce a supernova has converged to 8 +/- 1
We investigate the post-explosion phase in core-collapse supernovae with 2D hydrodynamical simulations and a simple neutrino treatment. The latter allows us to perform 46 simulations and follow the evolution of the 32 successful explosions during sev
We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11-28 solar masses, including progenitors recently investigated by other groups. All mo