ترغب بنشر مسار تعليمي؟ اضغط هنا

Progenitor-dependent Explosion Dynamics in Self-consistent, Axisymmetric Simulations of Neutrino-driven Core-collapse Supernovae

127   0   0.0 ( 0 )
 نشر من قبل Alexander Summa
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Alexander Summa




اسأل ChatGPT حول البحث

We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11-28 solar masses, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si-O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si-O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection time scales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.

قيم البحث

اقرأ أيضاً

133 - M. Witt , A. Psaltis , H. Yasin 2021
We investigate the post-explosion phase in core-collapse supernovae with 2D hydrodynamical simulations and a simple neutrino treatment. The latter allows us to perform 46 simulations and follow the evolution of the 32 successful explosions during sev eral seconds. We present a broad study based on three progenitors (11.2 $M_odot$, 15 $M_odot$, and 27 $M_odot$), different neutrino-heating efficiencies, and various rotation rates. We show that the first seconds after shock revival determine the final explosion energy, remnant mass, and properties of ejected matter. Our results suggest that a continued mass accretion increases the explosion energy even at late times. We link the late-time mass accretion to initial conditions such as rotation strength and shock deformation at explosion time. Only some of our simulations develop a neutrino-driven wind that survives for several seconds. This indicates that neutrino-driven winds are not a standard feature expected after every successful explosion. Even if our neutrino treatment is simple, we estimate the nucleosynthesis of the exploding models for the 15 $M_odot$ progenitor after correcting the neutrino energies and luminosities to get a more realistic electron fraction.
We present results from an ab initio three-dimensional, multi-physics core collapse supernova simulation for the case of a 15 M progenitor. Our simulation includes multi-frequency neutrino transport with state-of-the-art neutrino interactions in the ray-by-ray approximation, and approximate general relativity. Our model exhibits a neutrino-driven explosion. The shock radius begins an outward trajectory at approximately 275 ms after bounce, giving the first indication of a developing explosion in the model. The onset of this shock expansion is delayed relative to our two-dimensional counterpart model, which begins at approximately 200 ms after core bounce. At a time of 441 ms after bounce, the angle-averaged shock radius in our three-dimensional model has reached 751 km. Further quantitative analysis of the outcomes in this model must await further development of the post-bounce dynamics and a simulation that will extend well beyond 1 s after stellar core bounce, based on the results for the same progenitor in the context of our two-dimensional, counterpart model. This more complete analysis will determine whether or not the explosion is robust and whether or not observables such as the explosion energy, 56Ni mass, etc. are in agreement with observations. Nonetheless, the onset of explosion in our ab initio three-dimensional multi-physics model with multi-frequency neutrino transport and general relativity is encouraging.
137 - Marcella Ugliano 2012
We perform hydrodynamic supernova simulations in spherical symmetry for over 100 single stars of solar metallicity to explore the progenitor-explosion and progenitor-remnant connections established by the neutrino-driven mechanism. We use an approxim ative treatment of neutrino transport and replace the high-density interior of the neutron star (NS) by an inner boundary condition based on an analytic proto-NS core-cooling model, whose free parameters are chosen such that explosion energy, nickel production, and energy release by the compact remnant of progenitors around 20 solar masses are compatible with Supernova 1987A. Thus we are able to simulate the accretion phase, initiation of the explosion, subsequent neutrino-driven wind phase for 15-20 s, and the further evolution of the blast wave for hours to days until fallback is completed. Our results challenge long-standing paradigms. We find that remnant mass, launch time, and properties of the explosion depend strongly on the stellar structure and exhibit large variability even in narrow intervals of the progenitors zero-age-main-sequence mass. While all progenitors with masses below about 15 solar masses yield NSs, black hole (BH) as well as NS formation is possible for more massive stars, where partial loss of the hydrogen envelope leads to weak reverse shocks and weak fallback. Our NS baryonic masses of ~1.2-2.0 solar masses and BH masses >6 solar masses are compatible with a possible lack of low-mass BHs in the empirical distribution. Neutrino heating accounts for SN energies between some 10^{50} erg and about 2*10^{51} erg, but can hardly explain more energetic explosions and nickel masses higher than 0.1-0.2 solar masses. These seem to require an alternative SN mechanism.
Multidimensional hydrodynamic simulations of shell convection in massive stars suggest the development of aspherical perturbations that may be amplified during iron core-collapse. These perturbations have a crucial and qualitative impact on the delay ed neutrino-driven core-collapse supernova explosion mechanism by increasing the total stress behind the stalled shock. In this paper, we investigate the properties of a 15 msun model evolved in 1-,2-, and 3-dimensions (3D) for the final $sim$424 seconds before gravitational instability and iron core-collapse using MESA and the FLASH simulation framework. We find that just before collapse, our initially perturbed fully 3D model reaches angle-averaged convective velocity magnitudes of $approx$ 240-260 km s$^{-1}$ in the Si- and O-shell regions with a Mach number $approx$ 0.06. We find the bulk of the power in the O-shell resides at large scales, characterized by spherical harmonic orders ($ell$) of 2-4, while the Si-shell shows broad spectra on smaller scales of $ellapprox30-40$. Both convective regions show an increase in power at $ell=5$ near collapse. We show that the 1D texttt{MESA} model agrees with the convective velocity profile and speeds of the Si-shell when compared to our highest resolution 3D model. However, in the O-shell region, we find that texttt{MESA} predicts speeds approximately emph{four} times slower than all of our 3D models suggest. All eight of the multi-dimensional stellar models considered in this work are publicly available.
A large fraction of core-collapse supernovae (CCSNe), 30-50%, are expected to originate from the low-mass end of progenitors with $M_{rm ZAMS}~= 8-12~M_odot$. However, degeneracy effects make stellar evolution modelling of such stars challenging, and few predictions for their supernova light curves and spectra have been presented. Here we calculate synthetic nebular spectra of a 9 $M_odot$ Fe CCSN model exploded with the neutrino mechanism. The model predicts emission lines with FWHM$sim$1000 km/s, including signatures from each deep layer in the metal core. We compare this model to observations of the three subluminous IIP SNe with published nebular spectra; SN 1997D, SN 2005cs, and SN 2008bk. The prediction of both line profiles and luminosities are in good agreement with SN 1997D and SN 2008bk. The close fit of a model with no tuning parameters provides strong evidence for an association of these objects with low-mass Fe CCSNe. For SN 2005cs, the interpretation is less clear, as the observational coverage ended before key diagnostic lines from the core had emerged. We perform a parameterised study of the amount of explosively made stable nickel, and find that none of these three SNe show the high $^{58}$Ni/$^{56}$Ni ratio predicted by current models of electron capture SNe (ECSNe) and ECSN-like explosions. Combined with clear detection of lines from O and He shell material, these SNe rather originate from Fe core progenitors. We argue that the outcome of self-consistent explosion simulations of low-mass stars, which gives fits to many key observables, strongly suggests that the class of subluminous Type IIP SNe is the observational counterpart of the lowest mass CCSNe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا