ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of a dressed quark-gluon vertex in vector heavy-light mesons and theory average of B(c)* meson mass

84   0   0.0 ( 0 )
 نشر من قبل Andreas Krassnigg
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend earlier investigations of heavy-light pseudoscalar mesons to the vector case, using a simple model in the context of the Dyson-Schwinger-Bethe-Salpeter approach. We investigate the effects of a dressed-quark-gluon vertex in a systematic fashion and illustrate and attempt to quantify corrections beyond the phenomenologically very useful and successful rainbow-ladder truncation. In particular we investigate dressed quark photon vertex in such a setup and make a prediction for the experimentally as yet unknown mass of the B_c*, which we obtain at 6.334 GeV well in line with predictions from other approaches. Furthermore, we combine a comprehensive set of results from the theory literature. The theory average for the mass of the B_c* meson is 6.336 +- 0.002 GeV.



قيم البحث

اقرأ أيضاً

Using a simple model in the context of the Dyson-Schwinger-Bethe-Salpeter approach, we investigate the effects of a dressed-quark-gluon vertex on pseudoscalar meson masses. In particular, we focus on the unequal-mass case and investigate heavy-light meson masses; in addition, we study the premise of the effective treatment of heavy quarks in our approach.
There has been growing evidence that the infrared enhancement of the form factors defining the full quark-gluon vertex plays an important role in realizing a dynamical breakdown of chiral symmetry in quantum chromodynamics, leading to the observed sp ectrum and properties of hadrons. Both the lattice and the Schwinger-Dyson communities have begun to calculate these form factors in various kinematical regimes of momenta involved. A natural consistency check for these studies is that they should match onto the perturbative predictions in the ultraviolet, where non-perturbative effects mellow down. In this article, we carry out a numerical analysis of the one-loop result for all the form factors of the quark-gluon vertex. Interestingly, even the one-loop results qualitatively encode most of the infrared enhancement features expected of their non-perturbative counter parts. We analyze various kinematical configurations of momenta: symmetric, on-shell and asymptotic. The on-shell limit enables us to compute anomalous chromomagnetic moment of quarks. The asymptotic results have implications for the multiplicative renormalizability of the quark propagator and its connection with the Landau-Khalatnikov-Fradkin transformations, allowing us to analyze and compare various Ans$ddot{a}$tze proposed so far.
The temperature dependence of the mass, leptonic decay constant, and width of heavy-light quark peseudoscalar and vector mesons is obtained in the framework of thermal Hilbert moment QCD sum rules. The leptonic decay constants of both pseudoscalar an d vector mesons decrease with increasing $T$, and vanish at a critical temperature $T_c$, while the mesons develop a width which increases dramatically and diverges at $T_c$, where $T_c$ is the temperature for chiral-symmetry restoration. These results indicate the disappearance of hadrons from the spectral function, which then becomes a smooth function of the energy. This is interpreted as a signal for deconfinement at $T=T_c$. In contrast, the masses show little dependence on the temperature, except very close to $T_c$, where the pseudoscalar meson mass increases slightly by 10-20 %, and the vector meson mass decreases by some 20-30 %
75 - B. Blok 2020
We study the energy loss of a heavy quark propagating in the Quark-Gluon Plasma (QGP) in the framework of the Moller theory, including possible large Coulomb logarithms as a perturbation to BDMPSZ bremsstrahlung, described in the Harmonic Oscillator (HO) approximation. We derive the analytical expression that describes the energy loss in the entire emitted gluon frequency region. In the small frequencies region, for angles larger than the dead cone angle, the energy loss is controlled by the BDMPSZ mechanism, while for larger frequencies it is described by N=1 term in the GLV opacity expansion. We estimate corresponding quenching rates for different values of the heavy quark path and different $m/E$ ratios.
The study of heavy-light meson masses should provide a way to determine renormalized quark masses and other properties of heavy-light mesons. In the context of lattice QCD, for example, it is possible to calculate hadronic quantities for arbitrary va lues of the quark masses. In this paper, we address two aspects relating heavy-light meson masses to the quark masses. First, we introduce a definition of the renormalized quark mass that is free of both scale dependence and renormalon ambiguities, and discuss its relation to more familiar definitions of the quark mass. We then show how this definition enters a merger of the descriptions of heavy-light masses in heavy-quark effective theory and in chiral perturbation theory ($chi$PT). For practical implementations of this merger, we extend the one-loop $chi$PT corrections to lattice gauge theory with heavy-light mesons composed of staggered fermions for both quarks. Putting everything together, we obtain a practical formula to describe all-staggered heavy-light meson masses in terms of quark masses as well as some lattice artifacts related to staggered fermions. In a companion paper, we use this function to analyze lattice-QCD data and extract quark masses and some matrix elements defined in heavy-quark effective theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا