ﻻ يوجد ملخص باللغة العربية
Integrating time-frequency resource conversion (TFRC), a new network resource allocation strategy, with call admission control can not only increase the cell capacity but also reduce network congestion effectively. However, the optimal setting of TFRC-oriented call admission control suffers from the curse of dimensionality, due to Markov chain-based optimization in a high-dimensional space. To address the scalability issue of TFRC, in [1] we extend the study of TFRC into the area of scheduling. Specifically, we study downlink scheduling based on TFRC for an LTE-type cellular network, to maximize service delivery. The service scheduling of interest is formulated as a joint request, channel and slot allocation problem which is NP-hard. An offline deflation and sequential fixing based algorithm (named DSFRB) with only polynomial-time complexity is proposed to solve the problem. For practical online implementation, two TFRC-enabled low-complexity algorithms, modified Smith ratio algorithm (named MSR) and modified exponential capacity algorithm (named MEC), are proposed as well. In this report, we present detailed numerical results of the proposed offline and online algorithms, which not only show the effectiveness of the proposed algorithms but also corroborate the advantages of the proposed TFRC-based schedule techniques in terms of quality-of-service (QoS) provisioning for each user and revenue improvement for a service operator.
Software-defined networking (SDN) provides an agile and programmable way to optimize radio access networks via a control-data plane separation. Nevertheless, reaping the benefits of wireless SDN hinges on making optimal use of the limited wireless fr
Software-defined networking (SDN) is the concept of decoupling the control and data planes to create a flexible and agile network, assisted by a central controller. However, the performance of SDN highly depends on the limitations in the fronthaul wh
Edge computing is an emerging solution to support the future Internet of Things (IoT) applications that are delay-sensitive, processing-intensive or that require closer intelligence. Machine intelligence and data-driven approaches are envisioned to b
With the proliferation of the Internet of Things (IoT) and the wide penetration of wireless networks, the surging demand for data communications and computing calls for the emerging edge computing paradigm. By moving the services and functions locate
With the advantages of Millimeter wave in wireless communication network, the coverage radius and inter-site distance can be further reduced, the ultra dense network (UDN) becomes the mainstream of future networks. The main challenge faced by UDN is