ﻻ يوجد ملخص باللغة العربية
The paper refutes the model and claims published in the Solid State Communications [1] as well as elsewhere. The theoretical approach proposed in The multicaloric effect in multiferroic materials by Melvin M.~Vopson has a number of inaccuracies and mistakes. The Author of [1] does not pay necessary attention to the range of applicability of the derived equations and confuses the dependent and independent variables. The resulting equations for electrically and magnetically induced multicaloric effects are incorrect and cannot be used for measurement interpretation.
We have investigated multiple caloric effects in multiferroic Y2CoMnO6. Polycrystalline sample prepared by solid state method has shown a ferromagnetic Curie temperature 75 K with second order phase transition; a maximum magneto entropy change -$Delt
The relation between unusual Mexican-hat band dispersion, ferromagnetism and ferroelasticity is investigated using a combination of analytical, first-principles and phenomenological methods. The class of material with Mexican-hat band edge is studied
We derive a sum rule to demonstrate that the static magnetoelectric (ME) effect is governed by optical transitions that are simultaneously excited via the electric and magnetic components of light. By a systematic analysis of magnetic point groups, w
The optical magnetoelectric effect, which is an inherent attribute of the spin excitations in multiferroics, drastically changes their optical properties compared to conventional materials where light-matter interaction is expressed only by the diele
Multiferroics are materials where two or more ferroic orders coexist owing to the interplay between spin, charge, lattice and orbital degrees of freedom. The explosive expansion of multiferroics literature in recent years demon-strates the fast growi