ﻻ يوجد ملخص باللغة العربية
We continue our work on adic semidualizing complexes over a commutative noetherian ring $R$ by investigating the associated Auslander and Bass classes (collectively known as Foxby classes), following Foxby and Christensen. Fundamental properties of these classes include Foxby Equivalence, which provides an equivalence between the Auslander and Bass classes associated to a given adic semidualizing complex. We prove a variety of stability results for these classes, for instance, with respect to $Fotimes^{mathbf{L}}_R-$ where $F$ is an $R$-complex finite flat dimension, including special converses of these results. We also investigate change of rings and local-global properties of these classes.
We introduce and study a class of objects that encompasses Christensen and Foxbys semidualizing modules and complexes and Kubiks quasi-dualizing modules: the class of $mathfrak{a}$-adic semidualizing modules and complexes. We give examples and equiva
Let R be a local ring and C a semidualizing module of R. We investigate the behavior of certain classes of generalized Cohen-Macaulay R-modules under the Foxby equivalence between the Auslander and Bass classes with respect to C. In particular, we sh
This paper has two parts. In the first part we recall the important role that weak proregularity of an ideal in a commutative ring has in derived completion and in adic flatness. We also introduce the new concepts of idealistic and sequential derived
We develop new methods to study $mathfrak{m}$-adic stability in an arbitrary Noetherian local ring. These techniques are used to prove results about the behavior of Hilbert-Samuel and Hilbert-Kunz multiplicities under fine $mathfrak{m}$-adic perturbations.