ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak Proregularity, Derived Completion, Adic Flatness, and Prisms

96   0   0.0 ( 0 )
 نشر من قبل Amnon Yekutieli
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Amnon Yekutieli




اسأل ChatGPT حول البحث

This paper has two parts. In the first part we recall the important role that weak proregularity of an ideal in a commutative ring has in derived completion and in adic flatness. We also introduce the new concepts of idealistic and sequential derived completion, and prove a few results about them, including the fact that these two concepts agree iff the ideal is weakly proregular. In the second part we study the local nature of weak proregularity, and its behavior w.r.t. ring quotients. These results allow us to prove that weak proregularity occurs in the context of bounded prisms, in the sense of Bhatt and Scholze. We anticipate that the concept of weak proregularity will help simplify and improve some of the more technical aspects of the groundbreaking theory of perfectoid rings and prisms (that has transformed arithmetic geometry in recent years).

قيم البحث

اقرأ أيضاً

116 - Amnon Yekutieli 2016
We continue investigating the interaction between flatness and $mathfrak{a}$-adic completion for infinitely generated modules over a commutative ring $A$. We introduce the concept of $mathfrak{a}$-adic flatness, which is weaker than flatness. We prov e that $mathfrak{a}$-adic flatness is preserved under completion when the ideal $mathfrak{a}$ is weakly proregular. We also prove that when $A$ is noetherian, $mathfrak{a}$-adic flatness coincides with flatness (for complete modules). An example is worked out of a non-noetherian ring $A$, with a weakly proregular ideal $mathfrak{a}$, for which the completion $hat{A}$ is not flat. We also study $mathfrak{a}$-adic systems, and prove that if the ideal $mathfrak{a}$ is finitely generated, then the limit of any $mathfrak{a}$-adic system is a complete module.
We lift the classical Hasse--Weil zeta function of varieties over a finite field to a map of spectra with domain the Grothendieck spectrum of varieties constructed by Campbell and Zakharevich. We use this map to prove that the Grothendieck spectrum o f varieties contains nontrivial geometric information in its higher homotopy groups by showing that the map $mathbb{S} to K(Var_k)$ induced by the inclusion of $0$-dimensional varieties is not surjective on $pi_1$ for a wide range of fields $k$. The methods used in this paper should generalize to lifting other motivic measures to maps of $K$-theory spectra.
We study when $R to S$ has the property that prime ideals of $R$ extend to prime ideals or the unit ideal of $S$, and the situation where this property continues to hold after adjoining the same indeterminates to both rings. We prove that if $R$ is r educed, every maximal ideal of $R$ contains only finitely many minimal primes of $R$, and prime ideals of $R[X_1,dots,X_n]$ extend to prime ideals of $S[X_1,dots,X_n]$ for all $n$, then $S$ is flat over $R$. We give a counterexample to flatness over a reduced quasilocal ring $R$ with infinitely many minimal primes by constructing a non-flat $R$-module $M$ such that $M = PM$ for every minimal prime $P$ of $R$. We study the notion of intersection flatness and use it to prove that in certain graded cases it suffices to examine just one closed fiber to prove the stable prime extension property.
97 - Josh Pollitz 2018
In this paper, we answer a question of Dwyer, Greenlees, and Iyengar by proving a local ring $R$ is a complete intersection if and only if every complex of $R$-modules with finitely generated homology is proxy small. Moreover, we establish that a com mutative noetherian ring $R$ is locally a complete intersection if and only if every complex of $R$-modules with finitely generated homology is virtually small.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا