ﻻ يوجد ملخص باللغة العربية
In order to provide a guaranteed precision and a more accurate judgement about the true value of the Cram{e}r-Rao bound and its scaling behavior, an upper bound (equivalently a lower bound on the quantum Fisher information) for precision of estimation is introduced. Unlike the bounds previously introduced in the literature, the upper bound is saturable and yields a practical instruction to estimate the parameter through preparing the optimal initial state and optimal measurement. The bound is based on the underling dynamics and its calculation is straightforward and requires only the matrix representation of the quantum maps responsible for encoding the parameter. This allows us to apply the bound to open quantum systems whose dynamics are described by either semigroup or non-semigroup maps. Reliability and efficiency of the method to predict the ultimate precision limit are demonstrated by {three} main examples.
One of the fundamental tasks in quantum metrology is to estimate multiple parameters embedded in a noisy process, i.e., a quantum channel. In this paper, we study fundamental limits to quantum channel estimation via the concept of amortization and th
The sum of entropic uncertainties for the measurement of two non-commuting observables is not always reduced by the amount of entanglement (quantum memory) between two parties, and in certain cases may be impacted by quantum correlations beyond entan
In an idealistic setting, quantum metrology protocols allow to sense physical parameters with mean squared error that scales as $1/N^2$ with the number of particles involved---substantially surpassing the $1/N$-scaling characteristic to classical sta
The Quantum Fisher Information (QFI) plays a crucial role in quantum information theory and in many practical applications such as quantum metrology. However, computing the QFI is generally a computationally demanding task. In this work we analyze a
Parameter estimation is of fundamental importance in areas from atomic spectroscopy and atomic clocks to gravitational wave detection. Entangled probes provide a significant precision gain over classical strategies in the absence of noise. However, r