ﻻ يوجد ملخص باللغة العربية
Parameter estimation is of fundamental importance in areas from atomic spectroscopy and atomic clocks to gravitational wave detection. Entangled probes provide a significant precision gain over classical strategies in the absence of noise. However, recent results seem to indicate that any small amount of realistic noise restricts the advantage of quantum strategies to an improvement by at most a multiplicative constant. Here, we identify a relevant scenario in which one can overcome this restriction and attain superclassical precision scaling even in the presence of uncorrelated noise. We show that precision can be significantly enhanced when the noise is concentrated along some spatial direction, while the Hamiltonian governing the evolution which depends on the parameter to be estimated can be engineered to point along a different direction. In the case of perpendicular orientation, we find superclassical scaling and identify a state which achieves the optimum.
Under ideal conditions, quantum metrology promises a precision gain over classical techniques scaling quadratically with the number of probe particles. At the same time, no-go results have shown that generic, uncorrelated noise limits the quantum adv
We analyze methods to go beyond the standard quantum limit for a class of atomic interferometers, where the quantity of interest is the difference of phase shifts obtained by two independent atomic ensembles. An example is given by an atomic Sagnac i
Quantum sensors have the potential to outperform their classical counterparts. For classical sensing, the uncertainty of the estimation of the target fields scales inversely with the square root of the measurement time T. On the other hand, by using
The most efficient modern optical communication is known as coherent communication and its standard quantum limit (SQL) is almost reachable with current technology. Though it has been predicted for a long time that this SQL could be overcome via quan
In an idealistic setting, quantum metrology protocols allow to sense physical parameters with mean squared error that scales as $1/N^2$ with the number of particles involved---substantially surpassing the $1/N$-scaling characteristic to classical sta