ﻻ يوجد ملخص باللغة العربية
In this work we study theoretically the properties of S-F/N-sIS type Josephson junctions in the frame of the quasiclassical Usadel formalism. The structure consists of two superconducting electrodes (S), a tunnel barrier (I), a combined normal metal/ferromagnet (N/F) interlayer and a thin superconducting film (s). We demonstrate the breakdown of a spatial uniformity of the superconducting order in the s-film and its decomposition into domains with a phase shift $pi $ . The effect is sensitive to the thickness of the s layer and the widths of the F and N films in the direction along the sIS interface. We predict the existence of a regime where the structure has two energy minima and can be switched between them by an electric current injected laterally into the structure. The state of the system can be non-destructively read by an electric current flowing across the junction.
We present a simple nanodevice that can operate in two modes: i) three-state memory and ii) reading device. The nanodevice is fabricated with an array of ordered triangular-shaped nanomagnets embedded in a superconducting thin film. The input signal
In this work we give a characterization of the RF effect of memory switching on Nb-Al/AlOx-(Nb)-Pd$_{0.99}$Fe$_{0.01}$-Nb Josephson junctions as a function of magnetic field pulse amplitude and duration, alongside with an electrodynamical characteriz
In order to explore the complexity and diversity of the flywheels dynamics, we have developed the real-physics computer model of a universal mechanical rotor. Due to an arbitrary external force concept, the model can be adjusted to operate identical
Josephson junctions containing ferromagnetic layers have generated interest for application in cryogenic memory. In a junction containing both a magnetically hard fixed layer and soft free layer with carefully chosen thicknesses, the ground-state pha
We investigate Magnetic Josephson Junction (MJJ) - a superconducting device with ferromagnetic barrier for a scalable high-density cryogenic memory compatible with energy-efficient single flux quantum (SFQ) circuits. The superconductor-insulator-supe