ﻻ يوجد ملخص باللغة العربية
Multiferroic properties of orthorhombic HoMnO3 (Pbnm space group) are significantly modified by epitaxial compressive strain along the a-axis. We are able to focus on the effect of strain solely along the a-axis by using an YAlO3 (010) substrate, which has only a small lattice mismatch with HoMnO3 along the other in-plane direction (the c-axis). Multiferroic properties of strained and relaxed HoMnO3 thin films are compared with those reported for bulk, and are found to differ widely. A relaxed film exhibits bulk-like properties such as a ferroelectric transition temperature of 25 K and an incommensurate antiferromagnetic order below 39 K, with an ordering wave vector of (0 qb 0) with qb ~ 0.41 at 10 K. A strained film becomes ferroelectric already at 37.5 K and has an incommensurate magnetic order with qb ~ 0.49 at 10 K.
We have grown epitaxial thin films of multiferroic BiMnO$_3$ using pulsed laser deposition. The films were grown on SrTiO$_3$ (001) substrates by ablating a Bi-rich target. Using x-ray diffraction we confirmed that the films were epitaxial and the st
Lattice structure can dictate electronic and magnetic properties of a material. Especially, reconstruction at a surface or heterointerface can create properties that are fundamentally different from those of the corresponding bulk material. We have i
We have combined neutron scattering and piezoresponse force microscopy to study the relation between the exchange bias observed in CoFeB/BiFeO3 heterostructures and the multiferroic domain structure of the BiFeO3 films. We show that the exchange fiel
We report a study on the thermodynamic stability and structure analysis of the epitaxial BiFeO3 (BFO) thin films grown on YAlO3 (YAO) substrate. First we observe a phase transition of MC-MA-T occurs in thin sample (<60 nm) with an utter tetragonal-li
La0.67Sr0.33MnO3 (LSMO) thin films under compressive strain have an orthorhombic symmetry with (1-10)o and (001)o in-plane orientations. (The subscript o denotes the orthorhombic symmetry.) Here, we grew LSMO on cubic (LaAlO3)0.3-(Sr2AlTaO6)0.7 (LSAT