ﻻ يوجد ملخص باللغة العربية
For extremal black holes, one can construct simpler, limiting spacetimes that describe the geometry near degenerate horizons. Since these spacetimes are known to have enhanced symmetry, the limiting objects coincide for different solutions. We show that this occurs for strongly magnetised Kerr-Newman solution, and how this is related to physical Meissner effect of expulsion of magnetic fields from extremal black holes.
After a brief summary of the basic properties of stationary spacetimes representing rotating, charged black holes in strong axisymmetric magnetic fields, we concentrate on extremal cases, for which the horizon surface gravity vanishes. We investigate
We develop a new perturbation method to study the dynamics of massive tensor fields on extremal and near-extremal static black hole spacetimes in arbitrary dimensions. On such backgrounds, one can classify the components of massive tensor fields into
We discuss a new perturbation method to study the dynamics of massive vector fields on (near-)extremal static black hole spacetimes. We start with, as our background, a rather generic class of warped product metrics, and classify the field variables
We briefly summarise the basic properties of spacetimes representing rotating, charged black holes in strong axisymmetric magnetic fields. We concentrate on extremal cases, for which the horizon surface gravity vanishes. We investigate their properti
We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and an U(1) electromagnetic field. Solving the coupled Einstein-Maxwell-scalar system we find exact hairy charged black hole