ﻻ يوجد ملخص باللغة العربية
We briefly summarise the basic properties of spacetimes representing rotating, charged black holes in strong axisymmetric magnetic fields. We concentrate on extremal cases, for which the horizon surface gravity vanishes. We investigate their properties by finding simpler spacetimes that exhibit their geometries near degenerate horizons. Employing the simpler geometries obtained by near-horizon limiting description we analyse the Meissner effect of magnetic field expulsion from extremal black holes.
For extremal black holes, one can construct simpler, limiting spacetimes that describe the geometry near degenerate horizons. Since these spacetimes are known to have enhanced symmetry, the limiting objects coincide for different solutions. We show t
Both cosmological expansion and black holes are ubiquitous features of our observable Universe, yet exact solutions connecting the two have remained elusive. To this end, we study self-gravitating classical fields within dynamical spherically symmetr
It has been well known since the 1970s that stationary black holes do not generically support scalar hair. Most of the no-hair theorems which support this depend crucially upon the assumption that the scalar field has no time dependence. Here we fill
Ernsts solution generating technique is adapted to Einstein-Maxwell theory conformally (and minimally) coupled to a scalar field. This integrable system enjoys a SU(2,1) symmetry which enables one to move, by Kinnersley transformations, though the ax
The weak cosmic censorship conjecture in the near-extremal BTZ black hole has been tested by the test particles and fields. It was claimed that this black hole could be overspun. In this paper, we review the thermodynamics and weak cosmic censorship