ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpretation of monoclinic hafnia valence electron energy loss spectra by TDDFT

77   0   0.0 ( 0 )
 نشر من قبل Valerio Olevano
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m-HfO$_2$) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermis Golden Rule density-functional theory (DFT) calculations can capture the qualitative features of the energy-loss spectrum, but we find that TDDFT, which accounts for local-field effects, provides nearly quantitative agreement with experiment. Using the DFT density of states and TDDFT dielectric functions, we characterize the excitations that result in the m-HfO$_2$ energy loss spectrum. The sole plasmon occurs between 13-16 eV, although the peaks $sim$28 and above 40 eV are also due to collective excitations. We furthermore elaborate on the first-principles techniques used, their accuracy, and remaining discrepancies among spectra. More specifically, we assess the influence of Hf semicore electrons (5$p$ and 4$f$) on the energy-loss spectrum, and find that the inclusion of transitions from the 4$f$ band damps the energy-loss intensity in the region above 13 eV. We study the impact of many-body effects in a DFT framework using the adiabatic local-density approximation (ALDA) exchange-correlation kernel, as well as from a many-body perspective using a $GW$-derived electronic structure to account for self-energy corrections. These results demonstrate some cancellation of errors between self-energy and excitonic effects, even for excitations from the Hf $4f$ shell. We also simulate the dispersion with increasing momentum transfer for plasmon and collective excitation peaks.



قيم البحث

اقرأ أيضاً

The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO$_2$) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the sa me momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO$_2$, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO$_2$ may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectric permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.
86 - H. Xu , B. Da , J. Toth 2016
We present an absolute extraction method of optical constants of metal from the measured reflection electron energy loss (REELS) spectra by using the recently developed reverse Monte Carlo (RMC) technique. The method is based on a direct physical mod eling of electron elastic and electron inelastic scattering near the surface region where the surface excitation becomes important to fully describe the spectrum loss feature intensity in relative to the elastic peak intensity. An optimization procedure of oscillator parameters appeared in the energy loss function (ELF) for describing electron inelastic scattering due to the bulk- and surface-excitations was performed with the simulated annealing method by a successive comparison between the measured and Monte Carlo simulated REELS spectra. The ELF and corresponding optical constants of Fe were obtained from the REELS spectra measured at incident energies of 1000, 2000 and 3000 eV. The validity of the present optical data has been verified with the f- and ps-sum rules showing the accuracy and applicability of the present approach. Our data are also compared with previous optical data from other sources.
Adsorption of organic molecules on well-oriented single crystal coinage metal surfaces fundamentally affects the energy distribution curve of ultra-violet photoelectron spectroscopy spectra. New features not present in the spectrum of the pristine me tal can be assigned as interface states having some degree of molecule-substrate hybridization. Here it is shown that interface states having molecular orbital character can easily be identified at low binding energy as isolated features above the featureless substrate sp-plateau. On the other hand much care must be taken in assigning adsorbate-induced features when these lie within the d-band spectral region of the substrate. In fact, features often interpreted as characteristic of the molecule-substrate interaction may actually arise from substrate photoelectrons scattered by the adsorbates. This phenomenon is illustrated through a series of examples of noble-metal single-crystal surfaces covered by monolayers of large pi-conjugated organic molecules.
We present results for the optical absorption spectra of small-diameter single-wall carbon and boron nitride nanotubes obtained by {it ab initio} calculations in the framework of time-dependent density functional theory. We compare the results with t hose obtained for the corresponding layered structures, i.e. the graphene and hexagonal BN sheets. In particular, we focus on the role of depolarization effects, anisotropies and interactions in the excited states. We show that already the random phase approximation reproduces well the main features of the spectra when crystal local field effects are correctly included, and discuss to which extent the calculations can be further simplified by extrapolating results obtained for the layered systems to results expected for the tubes. The present results are relevant for the interpretation of data obtained by recent experimental tools for nanotube characterization such as optical and fluorescence spectroscopies as well as polarized resonant Raman scattering spectroscopy. We also address electron energy loss spectra in the small-q momentum transfer limit. In this case, the interlayer and intertube interactions play an enhanced role with respect to optical spectroscopy.
There has been growing interest in perovskite BaSnO3 due to its desirable properties for oxide electronic devices including high electron mobility at room temperature and optical transparency. As these electronic and optical properties originate larg ely from the electronic structure of the material, here the basic electronic structure of epitaxially-grown BaSnO3 films is studied using high-energy-resolution electron energy-loss spectroscopy in a transmission electron microscope and ab initio calculations. This study provides a detailed description of the dielectric function of BaSnO3, including the energies of bulk plasmon excitations and critical interband electronic transitions, the band structure and partial densities of states, the measured band gap, and more. To make the study representative of a variety of deposition methods, results from BaSnO3 films grown by both hybrid molecular beam epitaxy and high pressure oxygen sputter deposition are reported.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا