ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced spectral sensitivity of a chip-scale photonic-crystal slow-light interferometer

169   0   0.0 ( 0 )
 نشر من قبل Omar S. Maga\\~na-Loaiza
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally demonstrate that the spectral sensitivity of a Mach-Zehnder (MZ) interferometer can be enhanced through structural slow light. We observe a 20 times enhancement by placing a dispersion-engineered-slow-light photonic-crystal waveguide in one arm of a fibre-based MZ interferometer. The spectral sensitivity of the interferometer increases roughly linearly with the group index, and we have quantified the resolution in terms of the spectral density of interference fringes. These results show promise for the use of slow-light methods for developing novel tools for optical metrology and, specifically, for compact high-resolution spectrometers.



قيم البحث

اقرأ أيضاً

The threshold properties of photonic crystal quantum dot lasers operating in the slow-light regime are investigated experimentally and theoretically. Measurements show that, in contrast to conventional lasers, the threshold gain attains a minimum val ue for a specific cavity length. The experimental results are explained by an analytical theory for the laser threshold that takes into account the effects of slow-light and random disorder due to unavoidable fabrication imperfections. Longer lasers are found to operate deeper into the slow-light region, leading to a trade-off between slow-light induced reduction of the mirror loss and slow-light enhancement of disorder-induced losses.
Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions, and increased phase shifts owing to its ability to promote light-matter interactions. By incorporating a graphene microheater on a slow-light silic on photonic crystal waveguide, we experimentally demonstrated an energy-efficient graphene microheater with a tuning efficiency of 1.07 nm/mW and power consumption per free spectral range of 3.99 mW. The rise and decay times (10% to 90%) were only 750 ns and 525 ns, which, to the best of our knowledge, are the fastest reported response times for microheaters in silicon photonics. The corresponding record-low figure of merit of the device was 2.543 nW.s, which is one order of magnitude lower than results reported in previous studies. The influences of the graphene-photonic crystal waveguide interaction length and the shape of the graphene heater were also investigated, providing valuable guidelines for enhancing the graphene microheater tuning efficiency.
The spectral dependence of a bending loss of cascaded 60-degree bends in photonic crystal (PhC) waveguides is explored in a slab-type silicon-on-insulator system. Ultra-low bending loss of (0.05+/-0.03)dB/bend is measured at wavelengths corresponding to the nearly dispersionless transmission regime. In contrast, the PhC bend is found to become completely opaque for wavelengths range corresponding to the slow light regime. A general strategy is presented and experimentally verified to optimize the bend design for improved slow light transmission.
Slow-light enhanced optical detection in liquid-infiltrated photonic crystals is theoretically studied. Using a scattering-matrix approach and the Wigner-Smith delay time concept, we show that optical absorbance benefits both from slow-light phenomen a as well as a high filling factor of the energy residing in the liquid. Utilizing strongly dispersive photonic crystal structures, we numerically demonstrate how liquid-infiltrated photonic crystals facilitate enhanced light-matter interactions, by potentially up to an order of magnitude. The proposed concept provides strong opportunities for improving existing miniaturized absorbance cells for optical detection in lab-on-a-chip systems.
Four-wave mixing is observed in a silicon W1 photonic crystal waveguide. The dispersion dependence of the idler conversion efficiency is measured and shown to be enhanced at wavelengths exhibiting slow group velocities. A 12-dB increase in the conver sion efficiency is observed. Concurrently, a decrease in the conversion bandwidth is observed due to the increase in group velocity dispersion in the slow-light regime. The experimentally observed conversion efficiencies agree with the numerically modeled results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا