ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of four-wave mixing in slow-light silicon photonic crystal waveguides

179   0   0.0 ( 0 )
 نشر من قبل James McMillan
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Four-wave mixing is observed in a silicon W1 photonic crystal waveguide. The dispersion dependence of the idler conversion efficiency is measured and shown to be enhanced at wavelengths exhibiting slow group velocities. A 12-dB increase in the conversion efficiency is observed. Concurrently, a decrease in the conversion bandwidth is observed due to the increase in group velocity dispersion in the slow-light regime. The experimentally observed conversion efficiencies agree with the numerically modeled results.



قيم البحث

اقرأ أيضاً

We report the observations of spontaneous Raman scattering in silicon photonic crystal waveguides. Continuous-wave measurements of Stokes emission for both wavelength and power dependence is reported in single line-defect waveguides in hexagonal latt ice photonic crystal silicon membranes. By utilizing the Bragg gap edge dispersion of the TM-like mode for pump enhancement and the TE-like fundamental mode-onset for Stokes enhancement, the Stokes emission was observed to increase by up to five times in the region of slow group velocity. The results show explicit nonlinear enhancement in a silicon photonic crystal slow-light waveguide device.
Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions, and increased phase shifts owing to its ability to promote light-matter interactions. By incorporating a graphene microheater on a slow-light silic on photonic crystal waveguide, we experimentally demonstrated an energy-efficient graphene microheater with a tuning efficiency of 1.07 nm/mW and power consumption per free spectral range of 3.99 mW. The rise and decay times (10% to 90%) were only 750 ns and 525 ns, which, to the best of our knowledge, are the fastest reported response times for microheaters in silicon photonics. The corresponding record-low figure of merit of the device was 2.543 nW.s, which is one order of magnitude lower than results reported in previous studies. The influences of the graphene-photonic crystal waveguide interaction length and the shape of the graphene heater were also investigated, providing valuable guidelines for enhancing the graphene microheater tuning efficiency.
We derive and validate a set of coupled Bloch wave equations for analyzing the reflection and transmission properties of active semiconductor photonic crystal waveguides. In such devices, slow-light propagation can be used to enhance the material gai n per unit length, enabling, for example, the realization of short optical amplifiers compatible with photonic integration. The coupled wave analysis is compared to numerical approaches based on the Fourier modal method and a frequency domain finite element technique. The presence of material gain leads to the build-up of a backscattered field, which is interpreted as distributed feedback effects or reflection at passive-active interfaces, depending on the approach taken. For very large material gain values, the band structure of the waveguide is perturbed, and deviations from the simple coupled Bloch wave model are found.
147 - Yu. A. Vlasov , N. Moll , 2003
e investigate both experimentally and theoretically the waveguiding properties of a novel double trench waveguide where a conventional single-mode strip waveguide is embedded in a two dimensional photonic crystal (PhC) slab formed in silicon on insul ator (SOI) wafers. We demonstrate that the bandwidth for relatively low-loss (50dB/cm) waveguiding is significantly expanded to 250nm covering almost all the photonic band gap owing to nearly linear dispersion of the TE-like waveguiding mode. The flat transmission spectrum however is interrupted by numerous narrow stop bands. We found that these stop bands can be attributed to anti-crossing between TE-like (positive parity) and TM-like (negative parity) modes. This effect is a direct result of the strong asymmetry of the waveguides that have an upper cladding of air and lower cladding of oxide. To our knowledge this is the first demonstration of the effects of cladding asymmetry on the transmission characteristics of the PhC slab waveguides.
We report the characterization of correlated photon pairs generated in dispersion-engineered silicon slow-light photonic crystal waveguides pumped by picosecond pulses. We found that taking advantage of the 15 nm flat-band slow-light window (vg ~ c/3 0) the bandwidth for correlated photon-pair generation in 96 and 196 mum long waveguides was at least 11.2 nm; while a 396 mum long waveguide reduced the bandwidth to 8 nm (only half of the slow-light bandwidth due to the increased impact of phase matching in a longer waveguide). The key metrics for a photon-pair source: coincidence to accidental ratio (CAR) and pair brightness were measured to be a maximum 33 at a pair generation rate of 0.004 pair per pulse in a 196 mum long waveguide. Within the measurement errors the maximum CAR achieved in 96, 196 and 396 mum long waveguides is constant. The noise analysis shows that detector dark counts, leaked pump light, linear and nonlinear losses, multiple pair generation and detector jitter are the limiting factors to the CAR performance of the sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا