ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature-driven transient charge and heat currents in nanoscale conductors

85   0   0.0 ( 0 )
 نشر من قبل Florian G. Eich
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the short-time behavior of the heat and charge currents through nanoscale conductors exposed to a temperature gradient. To this end, we employ Luttingers thermomechanical potential to simulate a sudden change of temperature at one end of the conductor. We find that the direction of the charge current through an impurity is initially opposite to the direction of the charge current in the steady-state limit. Furthermore, we investigate the transient propagation of energy and particle density driven by a temperature variation through a conducting nanowire. Interestingly, we find that the velocity of the wavefronts of, both, the particle and the energy wave have the same constant value, insensitive to changes in the average electronic density. In the steady-state regime, we find that, at low temperatures, the local temperature and potential, as measured by a floating probe lead, exhibit characteristic oscillations due to quantum interference, with a periodicity that corresponds to half the Fermi wavelength of the electrons.

قيم البحث

اقرأ أيضاً

The energy and charge fluxes carried by electrons in a two-terminal junction subjected to a random telegraph noise, produced by a single electronic defect, are analyzed. The telegraph processes are imitated by the action of a stochastic electric fiel d that acts on the electrons in the junction. Upon averaging over all random events of the telegraph process, it is found that this electric field supplies, on the average, energy to the electronic reservoirs, which is distributed unequally between them: the stronger is the coupling of the reservoir with the junction, the more energy it gains. Thus the noisy environment can lead to a temperature gradient across an un-biased junction.
We study the interaction between two closely spaced but electrically isolated one-dimensional electrical wires by a drag experiment. In this work we experimentally demonstrate the generation of current in an unbiased (drag) wire, which results from t he interactions with a neighboring biased (drive) wire. The direction of the drag current depends on the length of the one-dimensional wire with respect to the position of the barrier in the drag wire. When we additionally form a potential barrier in the drive wire, the direction of the drag current is determined by the relative position of the two barriers. We interpret this behavior in terms of electron excitations by phonon-mediated interactions between the two wires in presence of the electron scattering inside the drive wire.
Thermoelectric transport in nanoscale conductors is analyzed in terms of the response of the system to a thermo-mechanical field, first introduced by Luttinger, which couples to the electronic energy density. While in this approach the temperature re mains spatially uniform, we show that a spatially varying thermo-mechanical field effectively simulates a temperature gradient across the system and allows us to calculate the electric and thermal currents that flow due to the thermo-mechanical field. In particular, we show that, in the long-time limit, the currents thus calculated reduce to those that one obtains from the Landauer-Buttiker formula, suitably generalized to allow for different temperatures in the reservoirs, if the thermo-mechanical field is applied to prepare the system, and subsequently turned off at ${t=0}$. Alternatively, we can drive the system out of equilibrium by switching the thermo-mechanical field after the initial preparation. We compare these two scenarios, employing a model noninteracting Hamiltonian, in the linear regime, in which they coincide, and in the nonlinear regime in which they show marked differences. We also show how an operationally defined local effective temperature can be computed within this formalism.
Nanoscale solid-solid contacts define a wealth of material behaviours from the electrical and thermal conductivity in modern electronic devices to friction and losses in micro- and nanoelectromechanical systems. For modern ultra-high integration proc essor chips, power electronic devices and thermoelectrics one of the most essential, but thus far most challenging, aspects is the assessment of the heat transport at the nanoscale sized interfaces between their components. While this can be effectively addressed by a scanning thermal microscopy, or SThM, which demonstrates the highest spatial resolution to thermal transport to date, SThM quantitative capability is undermined by the poorly defined nature of the nanoscale contact between the probe tip and the sample. Here we show that simultaneous measurements of the shear force and the heat flow in the probe-sample junction shows distinct correlation between thermal conductance and maximal shear force in the junction for multiple probe-material combinations. Quantitative analysis of this correlation confirmed the intrinsic ballistic nature of the heat transport in the tip-surface nanoscale contact suggesting that they are, ultimately, composed of near-atomic sized regions. Furthermore, in analogy to the Wiedemann-Franz law, which links electrical and thermal conductivity in metals, we suggest and experimentally confirm a general relation that links shear strength and thermal conductance in nanoscale contacts via the fundamental material properties of heat capacity and heat carrier group velocity, thus opening new avenues for quantitative exploration of thermal transport on the nanoscale.
We report on transport measurement performed on a room-temperature-operating ultra-small Coulomb blockade devices with a silicon island of sub-5nm. The charge stability at 300K exhibits a substantial change in slopes and diagonal size of each success ive Coulomb diamond, but remarkably its main feature persists even at low temperature down to 5.3K except for additional Coulomb peak splitting. This key feature of charge stability with additional fine structures of Coulomb peaks are successfully modeled by including the interplay between Coulomb interaction, valley splitting, and strong quantum confinement, which leads to several low-energy many-body excited states for each dot occupancy. These excited states become enhanced in the sub-5nm ultra-small scale and persist even at 300K in the form of cluster, leading to the substantial modulation of charge stability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا