ترغب بنشر مسار تعليمي؟ اضغط هنا

Luttinger-field approach to thermoelectric transport in nanoscale conductors

295   0   0.0 ( 0 )
 نشر من قبل Florian G. Eich
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermoelectric transport in nanoscale conductors is analyzed in terms of the response of the system to a thermo-mechanical field, first introduced by Luttinger, which couples to the electronic energy density. While in this approach the temperature remains spatially uniform, we show that a spatially varying thermo-mechanical field effectively simulates a temperature gradient across the system and allows us to calculate the electric and thermal currents that flow due to the thermo-mechanical field. In particular, we show that, in the long-time limit, the currents thus calculated reduce to those that one obtains from the Landauer-Buttiker formula, suitably generalized to allow for different temperatures in the reservoirs, if the thermo-mechanical field is applied to prepare the system, and subsequently turned off at ${t=0}$. Alternatively, we can drive the system out of equilibrium by switching the thermo-mechanical field after the initial preparation. We compare these two scenarios, employing a model noninteracting Hamiltonian, in the linear regime, in which they coincide, and in the nonlinear regime in which they show marked differences. We also show how an operationally defined local effective temperature can be computed within this formalism.



قيم البحث

اقرأ أيضاً

We study thermoelectric transport through a coherent molecular conductor connected to two electron and two phonon baths using the nonequilibrium Greens function method. We focus on the mutual drag between electron and phonon transport as a result of `momentum transfer, which happens only when there are at least two phonon degrees of freedom. After deriving expressions for the linear drag coefficients, obeying the Onsager relation, we further investigate their effect on nonequilibrium transport. We show that the drag effect is closely related to two other phenomena: (1) adiabatic charge pumping through a coherent conductor; (2) the current-induced nonconservative and effective magnetic forces on phonons.
We analyze the structure of the surface states and Fermi arcs of Weyl semimetals as a function of the boundary conditions parameterizing the Hamiltonian self-adjoint extensions of a minimal model with two Weyl points. These boundary conditions determ ine both the pseudospin polarization of the system on the surface and the shape of the associated Fermi arcs. We analytically derive the expectation values of the density profile of the surface current, we evaluate the anomalous Hall conductivity as a function of temperature and chemical potential and we discuss the surface current correlation functions and their contribution to the thermal noise. Based on a lattice variant of the model, we numerically study the surface states at zero temperature and we show that their polarization and, consequently, their transport properties, can be varied by suitable Zeeman terms localized on the surface. We also provide an estimate of the bulk conductance of the system based on the Landauer-Buttiker approach. Finally, we analyze the surface anomalous thermal Hall conductivity and we show that the boundary properties lead to a correction of the expected universal thermal Hall conductivity, thus violating the Wiedemann-Franz law.
84 - F. G. Eich , M. Di Ventra , 2016
We analyze the short-time behavior of the heat and charge currents through nanoscale conductors exposed to a temperature gradient. To this end, we employ Luttingers thermomechanical potential to simulate a sudden change of temperature at one end of t he conductor. We find that the direction of the charge current through an impurity is initially opposite to the direction of the charge current in the steady-state limit. Furthermore, we investigate the transient propagation of energy and particle density driven by a temperature variation through a conducting nanowire. Interestingly, we find that the velocity of the wavefronts of, both, the particle and the energy wave have the same constant value, insensitive to changes in the average electronic density. In the steady-state regime, we find that, at low temperatures, the local temperature and potential, as measured by a floating probe lead, exhibit characteristic oscillations due to quantum interference, with a periodicity that corresponds to half the Fermi wavelength of the electrons.
We study theoretically the transport through a single impurity in a one-channel Luttinger liquid coupled to a dissipative (ohmic) bath . For non-zero dissipation $eta$ the weak link is always a relevant perturbation which suppresses transport strongl y. At zero temperature the current voltage relation of the link is $Isim exp(-E_0/eV)$ where $E_0simeta/kappa$ and $kappa$ denotes the compressibility. At non-zero temperature $T$ the linear conductance is proportional to $exp(-sqrt{{cal C}E_0/k_BT})$. The decay of Friedel oscillation saturates for distance larger than $L_{eta}sim 1/eta $ from the impurity.
We have simultaneously measured conductance and thermoelectric power (TEP) of individual silicon and germanium/silicon core/shell nanowires in the field effect transistor device configuration. As the applied gate voltage changes, the TEP shows distin ctly different behaviors while the electrical conductance exhibits the turn-off, subthreshold, and saturation regimes respectively. At room temperature, peak TEP value of $sim 300 mu$V/K is observed in the subthreshold regime of the Si devices. The temperature dependence of the saturated TEP values are used to estimate the carrier doping of Si nanowires.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا