ﻻ يوجد ملخص باللغة العربية
The authors in a previous paper devised certain subcones of the semidefinite plus nonnegative cone and showed that satisfaction of the requirements for membership of those subcones can be detected by solving linear optimization problems (LPs) with $O(n)$ variables and $O(n^2)$ constraints. They also devised LP-based algorithms for testing copositivity using the subcones. In this paper, they investigate the properties of the subcones in more detail and explore larger subcones of the positive semidefinite plus nonnegative cone whose satisfaction of the requirements for membership can be detected by solving LPs. They introduce a {em semidefinite basis (SD basis)} that is a basis of the space of $n times n$ symmetric matrices consisting of $n(n+1)/2$ symmetric semidefinite matrices. Using the SD basis, they devise two new subcones for which detection can be done by solving LPs with $O(n^2)$ variables and $O(n^2)$ constraints. The new subcones are larger than the ones in the previous paper and inherit their nice properties. The authors also examine the efficiency of those subcones in numerical experiments. The results show that the subcones are promising for testing copositivity as a useful application.
We study the problem of maximizing the geometric mean of $d$ low-degree non-negative forms on the real or complex sphere in $n$ variables. We show that this highly non-convex problem is NP-hard even when the forms are quadratic and is equivalent to o
We develop techniques to construct a series of sparse polyhedral approximations of the semidefinite cone. Motivated by the semidefinite (SD) bases proposed by Tanaka and Yoshise (2018), we propose a simple expansion of SD bases so as to keep the spar
If $X$ is an $ntimes n$ symmetric matrix, then the directional derivative of $X mapsto det(X)$ in the direction $I$ is the elementary symmetric polynomial of degree $n-1$ in the eigenvalues of $X$. This is a polynomial in the entries of $X$ with the
We consider a new and general online resource allocation problem, where the goal is to maximize a function of a positive semidefinite (PSD) matrix with a scalar budget constraint. The problem data arrives online, and the algorithm needs to make an ir
The matrix logarithm, when applied to Hermitian positive definite matrices, is concave with respect to the positive semidefinite order. This operator concavity property leads to numerous concavity and convexity results for other matrix functions, man