ترغب بنشر مسار تعليمي؟ اضغط هنا

Splitting of the universality class of anomalous transport in crowded media

130   0   0.0 ( 0 )
 نشر من قبل Felix H\\\"ofling
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the emergence of subdiffusive transport by obstruction in continuum models for molecular crowding. While the underlying percolation transition for the accessible space displays universal behavior, the dynamic properties depend in a subtle non-universal way on the transport through narrow channels. At the same time, the different universality classes are robust with respect to introducing correlations in the obstacle matrix as we demonstrate for quenched hard-sphere liquids as underlying structures. Our results confirm that the microscopic dynamics can dominate the relaxational behavior even at long times, in striking contrast to glassy dynamics.



قيم البحث

اقرأ أيضاً

The pair contact process with diffusion (PCPD) is studied with a standard Monte Carlo approach and with simulations at fixed densities. A standard analysis of the simulation results, based on the particle densities or on the pair densities, yields in consistent estimates for the critical exponents. However, if a well-chosen linear combination of the particle and pair densities is used, leading corrections can be suppressed, and consistent estimates for the independent critical exponents delta=0.16(2), beta=0.28(2) and z=1.58 are obtained. Since these estimates are also consistent with their values in directed percolation (DP), we conclude that PCPD falls in the same universality class as DP.
93 - Jamir Marino 2021
We show that spatial resolved dissipation can act on Ising lattices molding the universality class of their critical points. We consider non-local spin losses with a Liouvillian gap closing at small momenta as $propto q^alpha$, with $alpha$ a positiv e tunable exponent, directly related to the power-law decay of the spatial profile of losses at long distances. The associated quantum noise spectrum is gapless in the infrared and it yields a class of soft modes asymptotically decoupled from dissipation at small momenta. These modes are responsible for the emergence of a critical scaling regime which can be regarded as the non-unitary analogue of the universality class of long-range interacting Ising models. In particular, for $0<alpha<1$ we find a non-equilibrium critical point ruled by a dynamical field theory ascribable to a Langevin model with coexisting inertial ($proptoomega^2$) and frictional ($proptoomega$) kinetic coefficients, and driven by a gapless Markovian noise with variance $propto q^alpha$ at small momenta. This effective field theory is beyond the Halperin-Hohenberg description of dynamical criticality, and its critical exponents differ from their unitary long-range counterparts. Furthermore, by employing a one-loop improved RG calculation, we estimate the conditions for observability of this scaling regime before incoherent local emission intrudes in the spin sample, dragging the system into a thermal fixed point. We also explore other instances of criticality which emerge for $alpha>1$ or adding long-range spin interactions. Our work lays out perspectives for a revision of universality in driven-open systems by employing dark states supported by non-local dissipation.
The problem of biological motion is a very intriguing and topical issue. Many efforts are being focused on the development of novel modeling approaches for the description of anomalous diffusion in biological systems, such as the very complex and het erogeneous cell environment. Nevertheless, many questions are still open, such as the joint manifestation of statistical features in agreement with different models that can be also somewhat alternative to each other, e.g., Continuous Time Random Walk (CTRW) and Fractional Brownian Motion (FBM). To overcome these limitations, we propose a stochastic diffusion model with additive noise and linear friction force (linear Langevin equation), thus involving the explicit modeling of velocity dynamics. The complexity of the medium is parameterized via a population of intensity parameters (relaxation time and diffusivity of velocity), thus introducing an additional randomness, in addition to white noise, in the particles dynamics. We prove that, for proper distributions of these parameters, we can get both Gaussian anomalous diffusion, fractional diffusion and its generalizations.
Atypical eigenstates in the form of quantum scars and fragmentation of Hilbert space due to conservation laws provide obstructions to thermalization in the absence of disorder. In certain models with dipole and $U(1)$ conservation, the fragmentation results in subdiffusive transport. In this paper we study the interplay between scarring and weak fragmentation giving rise to anomalous hydrodynamics in a class of one-dimensional spin-1 frustration-free projector Hamiltonians, known as deformed Motzkin chain. The ground states and low-lying excitations of these chains exhibit large entanglement and critical slowdown. We show that at high energies the particular form of the projectors causes the emergence of disjoint Krylov subspaces for open boundary conditions, with an exact quantum scar being embedded in each subspace, leading to slow growth of entanglement and localized dynamics for specific out-of-equilibrium initial states. Furthermore, focusing on infinite temperature, we unveil that spin transport is subdiffusive, which we corroborate by simulations of suitable stochastic cellular automaton circuits. Compared to dipole moment conserving systems, the deformed Motzkin chain appears to belong to a different universality class with distinct dynamical transport exponent and only polynomially many Krylov subspaces.
We report extensive numerical simulations of growth models belonging to the nonlinear molecular beam epitaxy (nMBE) class, on flat (fixed-size) and expanding substrates (ES). In both $d=1+1$ and $2+1$, we find that growth regime height distributions (HDs), and spatial and temporal covariances are universal, but are dependent on the initial conditions, while the critical exponents are the same for flat and ES systems. Thus, the nMBE class does split into subclasses, as does the Kardar-Parisi-Zhang (KPZ) class. Applying the KPZ ansatz to nMBE models, we estimate the cumulants of the $1+1$ HDs. Spatial covariance for the flat subclass is hallmarked by a minimum, which is not present in the ES one. Temporal correlations are shown to decay following well-known conjectures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا