ترغب بنشر مسار تعليمي؟ اضغط هنا

Universality class of Ising critical states with long-range losses

94   0   0.0 ( 0 )
 نشر من قبل Jamir Marino Prof
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jamir Marino




اسأل ChatGPT حول البحث

We show that spatial resolved dissipation can act on Ising lattices molding the universality class of their critical points. We consider non-local spin losses with a Liouvillian gap closing at small momenta as $propto q^alpha$, with $alpha$ a positive tunable exponent, directly related to the power-law decay of the spatial profile of losses at long distances. The associated quantum noise spectrum is gapless in the infrared and it yields a class of soft modes asymptotically decoupled from dissipation at small momenta. These modes are responsible for the emergence of a critical scaling regime which can be regarded as the non-unitary analogue of the universality class of long-range interacting Ising models. In particular, for $0<alpha<1$ we find a non-equilibrium critical point ruled by a dynamical field theory ascribable to a Langevin model with coexisting inertial ($proptoomega^2$) and frictional ($proptoomega$) kinetic coefficients, and driven by a gapless Markovian noise with variance $propto q^alpha$ at small momenta. This effective field theory is beyond the Halperin-Hohenberg description of dynamical criticality, and its critical exponents differ from their unitary long-range counterparts. Furthermore, by employing a one-loop improved RG calculation, we estimate the conditions for observability of this scaling regime before incoherent local emission intrudes in the spin sample, dragging the system into a thermal fixed point. We also explore other instances of criticality which emerge for $alpha>1$ or adding long-range spin interactions. Our work lays out perspectives for a revision of universality in driven-open systems by employing dark states supported by non-local dissipation.



قيم البحث

اقرأ أيضاً

308 - Marco Picco 2012
We present results of a Monte Carlo study for the ferromagnetic Ising model with long range interactions in two dimensions. This model has been simulated for a large range of interaction parameter $sigma$ and for large sizes. We observe that the resu lts close to the change of regime from intermediate to short range do not agree with the renormalization group predictions.
139 - R.T. Scalettar 2004
Statistical mechanical models with local interactions in $d>1$ dimension can be regarded as $d=1$ dimensional models with regular long range interactions. In this paper we study the critical properties of Ising models having $V$ sites, each having $z $ randomly chosen neighbors. For $z=2$ the model reduces to the $d=1$ Ising model. For $z= infty$ we get a mean field model. We find that for finite $z > 2$ the system has a second order phase transition characterized by a length scale $L={rm ln}V$ and mean field critical exponents that are independent of $z$.
We study the phase diagram and critical properties of quantum Ising chains with long-range ferromagnetic interactions decaying in a power-law fashion with exponent $alpha$, in regimes of direct interest for current trapped ion experiments. Using larg e-scale path integral Monte Carlo simulations, we investigate both the ground-state and the nonzero-temperature regimes. We identify the phase boundary of the ferromagnetic phase and obtain accurate estimates for the ferromagnetic-paramagnetic transition temperatures. We further determine the critical exponents of the respective transitions. Our results are in agreement with existing predictions for interaction exponents $alpha > 1$ up to small deviations in some critical exponents. We also address the elusive regime $alpha < 1$, where we find that the universality class of both the ground-state and nonzero-temperature transition is consistent with the mean-field limit at $alpha = 0$. Our work not only contributes to the understanding of the equilibrium properties of long-range interacting quantum Ising models, but can also be important for addressing fundamental dynamical aspects, such as issues concerning the open question of thermalization in such models.
We analyze a controversial question about the universality class of the three-dimensional Ising model with long-range-correlated disorder. Whereas both analytical and numerical studies performed so far support an extended Harris criterion (A. Weinrib , B. I. Halperin, Phys. Rev. B 27 (1983) 413) and bring about the new universality class, the numerical values of the critical exponents found so far differ essentially. To resolve this discrepancy we perform extensive Monte Carlo simulations of a 3d Ising magnet with non-magnetic impurities arranged as lines with random orientation. We apply Wolff cluster algorithm accompanied by a histogram reweighting technique and make use of the finite-size scaling to extract the values of critical exponents governing the magnetic phase transition. Our estimates for the exponents differ from the results of the two numerical simulations performed so far and are in favour of a non-trivial dependency of the critical exponents on the peculiarities of long-range correlations decay.
The critical behavior of the Ising chain with long-range ferromagnetic interactions decaying with distance $r^alpha$, $1<alpha<2$, is investigated using a numerically efficient transfer matrix (TM) method. Finite size approximations to the infinite c hain are considered, in which both the number of spins and the number of interaction constants can be independently increased. Systems with interactions between spins up to 18 sites apart and up to 2500 spins in the chain are considered. We obtain data for the critical exponents $ u$ associated with the correlation length based on the Finite Range Scaling (FRS) hypothesis. FRS expressions require the evaluation of derivatives of the thermodynamical properties, which are obtained with the help of analytical recurrence expressions obtained within the TM framework. The Van den Broeck extrapolation procedure is applied in order to estimate the convergence of the exponents. The TM procedure reduces the dimension of the matrices and circumvents several numerical matrix operations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا