ﻻ يوجد ملخص باللغة العربية
The confinement of a superconductor in a thin film changes its Fermi-level density of states and is expected to change its critical temperature $T_c$. Previous calculations have reported large discontinuities of $T_c$ when the chemical potential coincides with a subband edge. By solving the BCS gap equation exactly, we show that such discontinuities are artifacts and that $T_c$ is a continuous function of the film thickness. We also find that $T_c$ is reduced in thin films compared with the bulk if the confinement potential is lower than a critical value, while for stronger confinement $T_c$ increases with decreasing film thickness, reaches a maximum, and eventually drops to zero. Our numerical results are supported by several exact solutions. We finally interpret experimental data for ultrathin lead thin films in terms of a thickness-dependent effective mass.
The pairing temperature of superconducting thin films is expected to display, within the Bardeen-Cooper-Schrieffer theory, oscillations as a function of the film thickness. We show that the pattern of these oscillations switches between two different
The free energy, non-gradient terms of the Ginzburg-Landau expansion, and the jump of the specific heat of a multiband anisotropic-gap clean BCS superconductor are derived in the framework of a separable-kernel approximation. Results for a two-band s
We establish quasi-two-dimensional thin films of iron-based superconductors (FeSCs) as a new high-temperature platform for hosting intrinsic time-reversal-invariant helical topological superconductivity (TSC). Based on the combination of Dirac surfac
We develop a squeezed-field path-integral representation for BCS superconductors utilizing a generalized completeness relation of squeezed-fermionic coherent states. We derive a Grassmann path integral of fermionic quasiparticles that explicitly incl
We study the out-of-equilibrium dynamics of a Bardeen-Cooper-Schrieffer condensate subject to a periodic drive. We demonstrate that the combined effect of drive and interactions results in emerging parametric resonances, analogous to a vertically dri