ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological observables in many-flavour QCD

135   0   0.0 ( 0 )
 نشر من قبل Ed Bennett
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

SU(3) gauge theory with eight massless flavours is believed to be walking, while the corresponding twelve- and four-flavour appear IR-conformal and confining respectively. Looking at the simulations performed by the LatKMI collaboration of these theories, we use the topological susceptibility as an additional probe of the IR dynamics. By drawing a comparison with SU(3) pure gauge theory, we see a dynamical quenching effect emerge at larger number of flavours, which is suggestive of emerging near-conformal and conformal behaviour.



قيم البحث

اقرأ أيضاً

The LatKMI collaboration is studying systematically the dynamical properties of N_f = 4,8,12,16 SU(3) gauge theories using lattice simulations with (HISQ) staggered fermions. Exploring the spectrum of many-flavour QCD, and its scaling near the chiral limit, is mandatory in order to establish if one of these models realises the Walking Technicolor scenario. Although lattice technologies to study the mesonic spectrum are well developed, scalar flavour-singlet states still require extra effort to be determined. In addition, gluonic observables usually require large-statistic simulations and powerful noise-reduction techniques. In the following, we present useful spectroscopic methods to investigate scalar glueballs and scalar flavour-singlet mesons, together with the current status of the scalar spectrum in N_f = 12 QCD from the LatKMI collaboration.
We measure glueball masses and the string tension in twelve-flavour QCD, aiming at comparing the emerging gluonic spectrum to the mesonic one. When approaching the critical surface at zero quark mass, the hierarchy of masses in the different sectors of the spectrum gives a new handle to determine the existence of an infrared fixed point. We describe the details of our gluonic measurements and the results obtained on a large number of gauge configurations generated with the HISQ action. In particular, we focus on the scalar glueball and its mixing with a flavour-singlet fermionic state, which is lighter than the pseudoscalar (would-be pion) state. The results are interesting in view of a light composite Higgs boson in walking technicolor theories.
LatKMI Collaboration discusses the topological insights in many-flavor QCD on the lattice. We explore walking/conformal/confining phase in $N_mathrm{f}$ = 4, 8 and 12 (in particular $N_mathrm{f}$ = 8) lattice QCD via the topological charge and susceptibility, eigenvalues and anomalous dimension.
We compute charmonium spectral functions in 2-flavour QCD using the maximum entropy method and anisotropic lattices. We find that the S-waves (J/psi and eta_c) survive up to temperatures close to 2T_c, while the P-waves (chi_c0 and chi_c1) melt away below 1.3T_c.
We explore the nature of the bulk transition observed at strong coupling in the SU(3) gauge theory with Nf=12 fermions in the fundamental representation. The transition separates a weak coupling chirally symmetric phase from a strong coupling chirall y broken phase and is compatible with the scenario where conformality is restored by increasing the flavour content of a non abelian gauge theory. We explore the intriguing possibility that the observed bulk transition is associated with the occurrence of an ultraviolet fixed point (UVFP) at strong coupling, where a new theory emerges in the continuum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا