ﻻ يوجد ملخص باللغة العربية
We measure glueball masses and the string tension in twelve-flavour QCD, aiming at comparing the emerging gluonic spectrum to the mesonic one. When approaching the critical surface at zero quark mass, the hierarchy of masses in the different sectors of the spectrum gives a new handle to determine the existence of an infrared fixed point. We describe the details of our gluonic measurements and the results obtained on a large number of gauge configurations generated with the HISQ action. In particular, we focus on the scalar glueball and its mixing with a flavour-singlet fermionic state, which is lighter than the pseudoscalar (would-be pion) state. The results are interesting in view of a light composite Higgs boson in walking technicolor theories.
The LatKMI collaboration is studying systematically the dynamical properties of N_f = 4,8,12,16 SU(3) gauge theories using lattice simulations with (HISQ) staggered fermions. Exploring the spectrum of many-flavour QCD, and its scaling near the chiral
SU(3) gauge theory with eight massless flavours is believed to be walking, while the corresponding twelve- and four-flavour appear IR-conformal and confining respectively. Looking at the simulations performed by the LatKMI collaboration of these theo
We report the calculation of the flavor-singlet scalar in the SU(3) gauge theory with the degenerate twelve fermions in the fundamental representation using a HISQ-type action at a fixed $beta$. In order to reduce the large statistical error coming f
Based on lattice simulations using highly improved staggered quarks for twelve-flavor QCD with several bare fermion masses, we observe a flavor-singlet scalar state lighter than the pion in the correlators of fermionic interpolating operators. The sa
We present results for the charmonium spectrum from $N_f=2$ dynamical QCD simulations on $12^3times 80$ anisotropic lattices. Using all-to-all propagators we determine the ground and excited states of S, P and D waves and hybrids. We also evaluate th