ﻻ يوجد ملخص باللغة العربية
The detection of 200-1000 MeV neutrons requires large amounts, $sim$100 cm, of detector material because of the long nuclear interaction length of these particles. In the example of the NeuLAND neutron time-of-flight detector at FAIR, this is accomplished by using 3000 monolithic scintillator bars of 270$times$5$times$5 cm$^3$ size made of a fast plastic. Each bar is read out on the two long ends, and the needed time resolution of $sigma_t$ $<$ 150 ps is reached with fast timing photomultipliers. In the present work, it is investigated whether silicon photomultiplier (SiPM) photosensors can be used instead. Experiments with a picosecond laser system were conducted to determine the timing response of the assembly made up of SiPM and preamplifier. The response of the full system including also the scintillator was studied using 30 MeV single electrons provided by the ELBE superconducting electron linac. The ELBE data were matched by a simple Monte Carlo simulation, and they were found to obey an inverse-square-root scaling law. In the electron beam tests, a time resolution of $sigma_t$ = 136 ps was reached with a pure SiPM readout, well within the design parameters for NeuLAND.
The performance of scintillator counters with embedded wavelength-shifting fibers has been measured in the Fermilab Meson Test Beam Facility using 120 GeV protons. The counters were extruded with a titanium dioxide surface coating and two channels fo
Recent tests of a single module of the Jagiellonian Positron Emission Tomography system (J-PET) consisting of 30 cm long plastic scintillator strips have proven its applicability for the detection of annihilation quanta (0.511 MeV) with a coincidence
A laser calibration system was developed for monitoring and calibrating time of flight (TOF) scintillating detector arrays. The system includes setups for both small- and large-scale scintillator arrays. Following test-bench characterization, the las
Plastic scintillation detectors for Time-of-Flight (TOF) measurements are almost essential for event-by-event identification of relativistic rare isotopes. In this work, a pair of plastic scintillation detectors of 50 $times$ 50 $times$ 3$^{t}$ mm$^3
Silicon Photo-Multipliers (SiPM) are becoming the photo-detector of choice for increasingly more particle detection applications, from fundamental physics to medical and societal applications. One major consideration for their use at high-luminosity