ترغب بنشر مسار تعليمي؟ اضغط هنا

Weighted Estimates for the Berezin Transform and Bergman Projection on the Unit Ball in $mathbb{C}^{n}$

94   0   0.0 ( 0 )
 نشر من قبل Robert Rahm
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using modern techniques of dyadic harmonic analysis, we are able to prove sharp estimates for the Bergman projection and Berezin transform and more general operators in weighted Bergman spaces on the unit ball in $mathbb{C}^n$. The estimates are in terms of the Bekolle-Bonami constant of the weight.

قيم البحث

اقرأ أيضاً

For the weight function $W_mu(x) = (1-|x|^2)^mu$, $mu > -1$, $lambda > 0$ and $b_mu$ a normalizing constant, a family of mutually orthogonal polynomials on the unit ball with respect to the inner product $$ la f,g ra = {b_mu [int_{BB^d} f(x) g(x) W _mu(x) dx + lambda int_{BB^d} abla f(x) cdot abla g(x) W_mu(x) dx]} $$ are constructed in terms of spherical harmonics and a sequence of Sobolev orthog onal polynomials of one variable. The latter ones, hence, the orthogonal polynomials with respect to $la cdot,cdotra$, can be generated through a recursive formula.
89 - Benoit F. Sehba 2020
We prove Carleson embeddings for Bergman-Orlicz spaces of the unit ball that extend the lower triangle estimates for the usual Bergman spaces.
We establish a weighted inequality for the Bergman projection with matrix weights for a class of pseudoconvex domains. We extend a result of Aleman-Constantin and obtain the following estimate for the weighted norm of $P$: [|P|_{L^2(Omega,W)}leq C(ma thcal B_2(W))^{{2}}.] Here $mathcal B_2(W)$ is the Bekolle-Bonami constant for the matrix weight $W$ and $C$ is a constant that is independent of the weight $W$ but depends upon the dimension and the domain.
In this note we show that the weighted $L^{2}$-Sobolev estimates obtained by P. Charpentier, Y. Dupain & M. Mounkaila for the weighted Bergman projection of the Hilbert space $L^{2}left(Omega,dmu_{0}right)$ where $Omega$ is a smoothly bounded pseudoc onvex domain of finite type in $mathbb{C}^{n}$ and $mu_{0}=left(-rho_{0}right)^{r}dlambda$, $lambda$ being the Lebesgue measure, $rinmathbb{Q}_{+}$ and $rho_{0}$ a special defining function of $Omega$, are still valid for the Bergman projection of $L^{2}left(Omega,dmuright)$ where $mu=left(-rhoright)^{r}dlambda$, $rho$ being any defining function of $Omega$. In fact a stronger directional Sobolev estimate is established. Moreover similar generalizations are obtained for weighted $L^{p}$-Sobolev and lipschitz estimates in the case of pseudoconvex domain of finite type in $mathbb{C}^{2}$ and for some convex domains of finite type.
The main purpose of this paper is to extend and refine some work of Agler-McCarthy and Amar concerning the Corona problem for the polydisk and the unit ball in $mathbb{C}^n$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا