ﻻ يوجد ملخص باللغة العربية
We report on the development of on-chip microcavities and show their potential as a platform for cavity quantum electrodynamics experiments. Microcavity arrays were formed by the controlled buckling of SiO2/Ta2O5 Bragg mirrors, and exhibit a reflectance-limited finesse of 3500 and mode volumes as small as 35lambda^3. We show that the cavity resonance can be thermally tuned into alignment with the D2 transition of 87Rb, and outline two methods for providing atom access to the cavity. Owing to their small mode volume and high finesse, these cavities exhibit single-atom cooperativities as high as C1 = 65. A unique feature of the buckled-dome architecture is that the strong-coupling parameter g0/kappa is nearly independent of the cavity size. Furthermore, strong coupling should be achievable with only modest improvements in mirror reflectance, suggesting that these monolithic devices could provide a robust and scalable solution to the engineering of light-matter interfaces.
Many of the envisioned quantum photonic technologies, e.g. a quantum repeater, rely on an energy- (wavelength-) tunable source of polarization entangled photon pairs. The energy tunability is a fundamental requirement to perform two-photon-interferen
Optical cavities are of central importance in numerous areas of physics, including precision measurement, cavity optomechanics and cavity quantum electrodynamics. The miniaturisation and scaling to large numbers of sites is of interest for many of th
We report on the thermomechanical and thermal tuning properties of curved-mirror Fabry-Perot resonators, fabricated by the guided assembly of circular delamination buckles within a multilayer a-Si/SiO2 stack. Analytical models for temperature depende
We have developed and characterised a stable, narrow linewidth external-cavity laser (ECL) tunable over 100 nm around 1080 nm, using a single-angled-facet gain chip. We propose the ECL as a low-cost, high-performance alternative to fibre and diode la
We present a method to implement 3-dimensional polariton confinement with in-situ spectral tuning of the cavity mode. Our tunable microcavity is a hybrid system consisting of a bottom semiconductor distributed Bragg reflector (DBR) with a cavity cont