ﻻ يوجد ملخص باللغة العربية
SmB6 is a proposed topological Kondo insulator where the presence of topological nontriviality can be tuned by variations in the Sm valence. Experimentally, Sm valence can be changed by tuning stoichiometry of SmB6. We show that Raman scattering can detect vacancies lower than 1% of Sm sites in SmB6 crystal by probing the intensity of defect-induced scattering of the acoustic phonon branch at 10~meV. In the electronic Raman spectra of SmB6 at temperatures below 130~K, we observe features developing in A$_{1g}$ and E$_g$ symmetries at 100 and 41~meV which we assign to excitations between hybridized bands, and depressed spectral weight below 20~meV associated with the hybridization gap. With the increased number of Sm vacancies up to 1% we observe an increase of spectral weight below 20~meV showing that the gap is filling in with electronic states. For the sample with the lowest number of vacancies the in-gap exciton excitations with long lifetimes protected by hybridization gap are observed at 16-18~meV in E$_g$ and T$_{2g}$ symmetries. These excitations broaden as a decrease in the lifetime with increasing number of vacancies and are quenched by the presence of in-gap states at concentration of Sm vacancies of about 1%. Based on this study we suggest that only the most stoichiometric SmB6 samples have a bulk gap necessary for topological Kondo insulators.
Topological insulators host spin-polarized surface states which robustly span the band gap and hold promise for novel applications. Recent theoretical predictions have suggested that topologically protected surface states may similarly span the hybri
A necessary element for the predicted topological state in Kondo insulator SmB$_6$ is the hybridization gap which opens in this compound at low temperatures. In this work, we present a comparative study of the in-gap density of states due to Sm vacan
Motivated by the observation of light surface states in SmB6, we examine the effects of surface Kondo breakdown in topological Kondo insulators. We present both numerical and analytic results which show that the decoupling of the localized moments at
We report the temperature-dependent three-dimensional angle-resolved photoemission spectra of the Kondo semiconductor SmB$_6$. We found a difference in the temperature dependence of the peaks at the X and $Gamma$ points, due to hybridization between
Temperature dependence of the electronic structure of SmB6 is studied by high-resolution ARPES down to 1 K. We demonstrate that there is no essential difference for the dispersions of the surface states below and above the resistivity saturating anom