ترغب بنشر مسار تعليمي؟ اضغط هنا

Is there a maximum mass for black holes in galactic nuclei?

86   0   0.0 ( 0 )
 نشر من قبل Kohei Inayoshi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The largest observed supermassive black holes (SMBHs) have a mass of M_BH ~ 10^{10} M_sun, nearly independent of redshift, from the local (z~0) to the early (z>6) Universe. We suggest that the growth of SMBHs above a few 10^{10} M_sun is prevented by small-scale accretion physics, independent of the properties of their host galaxies or of cosmology. Growing more massive BHs requires a gas supply rate from galactic scales onto a nuclear region as high as >10^3 M_sun/yr. At such a high accretion rate, most of the gas converts to stars at large radii (~10-100 pc), well before reaching the BH. We adopt a simple model (Thompson et al. 2005) for a star-forming accretion disk, and find that the accretion rate in the sub-pc nuclear region is reduced to the smaller value of at most a few M_sun/yr. This prevents SMBHs from growing above ~10^{11} M_sun in the age of the Universe. Furthermore, once a SMBH reaches a sufficiently high mass, this rate falls below the critical value at which the accretion flow becomes advection dominated. Once this transition occurs, BH feeding can be suppressed by strong outflows and jets from hot gas near the BH. We find that the maximum SMBH mass, given by this transition, is between M_{BH,max} ~ (1-6) * 10^{10} M_sun, depending primarily on the efficiency of angular momentum transfer inside the galactic disk, and not on other properties of the host galaxy.



قيم البحث

اقرأ أيضاً

In many galactic nuclei, a nuclear stellar cluster (NSC) co-exists with a supermassive black hole (SMBH). In this work, we explore the idea that the NSC forms before the SMBH through the merger of several stellar clusters that may contain intermediat e-mass black holes (IMBHs). These IMBHs can subsequently grow by mergers and accretion to form an SMBH. To check the observable consequences of this proposed SMBH seeding mechanism, we created an observationally motivated mock population of galaxies, in which NSCs are constructed by aggregating stellar clusters that may or may not contain IMBHs. We model the growth of IMBHs in the NSCs through gravitational wave (GW) mergers with other IMBHs and gas accretion. In the case of GW mergers, the merged BH can either be retained or ejected depending on the GW recoil kick it receives. The likelihood of retaining the merged BH increases if we consider growth of IMBHs in the NSC through gas accretion. We find that nucleated lower-mass galaxies ($rm M_{star} lesssim 10^{9} M_{odot}$; e.g. M33) have an SMBH seed occupation fraction of about 0.3 to 0.5. This occupation fraction increases with galaxy stellar mass and for more massive galaxies ($rm 10^{9} M_{odot} lesssim rm M_{star} lesssim 10^{11} M_{odot}$), it is between 0.5 and 0.8, depending on how BH growth is modelled. These occupation fractions are consistent with observational constraints. Furthermore, allowing for BH growth also allows us to reproduce the observed diversity in the mass range of SMBHs in the $rm M_{rm NSC} - M_{rm BH}$ plane.
We use the James Clerk Maxwell Telescopes SCUBA-2 camera to image a 400 arcmin^2 area surrounding the GOODS-N field. The 850 micron rms noise ranges from a value of 0.49 mJy in the central region to 3.5 mJy at the outside edge. From these data, we co nstruct an 850 micron source catalog to 2 mJy containing 49 sources detected above the 4-sigma level. We use an ultradeep (11.5 uJy at 5-sigma) 1.4 GHz image obtained with the Karl G. Jansky Very Large Array together with observations made with the Submillimeter Array to identify counterparts to the submillimeter galaxies. For most cases of multiple radio counterparts, we can identify the correct counterpart from new and existing Submillimeter Array data. We have spectroscopic redshifts for 62% of the radio sources in the 9 arcmin radius highest sensitivity region (556/894) and 67% of the radio sources in the GOODS-N region (367/543). We supplement these with a modest number of additional photometric redshifts in the GOODS-N region (30). We measure millimetric redshifts from the radio to submillimeter flux ratios for the unidentified submillimeter sample, assuming an Arp 220 spectral energy distribution. We find a radio flux dependent K-z relation for the radio sources, which we use to estimate redshifts for the remaining radio sources. We determine the star formation rates (SFRs) of the submillimeter sources based on their radio powers and their submillimeter and find that they agree well. The radio data are deep enough to detect star-forming galaxies with SFRs >2000 solar masses per year to z~6. We find galaxies with SFRs up to ~6,000 solar masses per year over the redshift range z=1.5-6, but we see evidence for a turn-down in the SFR distribution function above 2000 solar masses per year.
We study the formation of a supermassive black hole (SMBH) binary and the shrinking of the separation of the two holes to sub-pc scales starting from a realistic major merger between two gas-rich spiral galaxies with mass comparable to our Milky Way. The simulations, carried out with the Adaptive Mesh Refinement (AMR) code RAMSES, are capable of resolving separations as small as 0.1 pc. The collision of the two galaxies produces a gravo-turbulent rotating nuclear disk with mass (10^9 Msun) and size (60 pc) in excellent agreement with previous SPH simulations with particle splitting that used a similar setup (Mayer et al. 2007) but were limited to separations of a few parsecs. The AMR results confirm that the two black holes sink rapidly as a result of dynamical friction onto the gaseous background, reaching a separation of 1 pc in less than 10^7 yr. We show that the dynamical friction wake is well resolved by our model and we find good agreement with analytical predictions of the drag force as a function of the Mach number. Below 1 pc, black hole pairing slows down significantly, as the relative velocity between the sinking SMBH becomes highly subsonic and the mass contained within their orbit falls below the mass of the binary itself, rendering dynamical friction ineffective. In this final stage, the black holes have not opened a gap as the gaseous background is highly pressurized in the center. Non-axisymmetric gas torques do not arise to restart sinking in absence of efficient dynamical friction, at variance with previous calculations using idealized equilibrium nuclear disk models. (abridged)
Nearly every massive galaxy harbors a supermassive black hole (SMBH) in its nucleus. SMBH masses are millions to billions $M_{odot}$, and they correlate with properties of spheroids of their host galaxies. While the SMBH growth channels, mergers and gas accretion, are well established, their origin remains uncertain: they could have either emerged from massive seeds ($10^5-10^6 M_{odot}$) formed by direct collapse of gas clouds in the early Universe or from smaller ($100 M_{odot}$) black holes, end-products of first stars. The latter channel would leave behind numerous intermediate mass black holes (IMBHs, $10^2-10^5 M_{odot}$). Although many IMBH candidates have been identified, none is accepted as definitive, thus their very existence is still debated. Using data mining in wide-field sky surveys and applying dedicated analysis to archival and follow-up optical spectra, we identified a sample of 305 IMBH candidates having masses $3times10^4<M_{mathrm{BH}}<2times10^5 M_{odot}$, which reside in galaxy centers and are accreting gas that creates characteristic signatures of a type-I active galactic nucleus (AGN). We confirmed the AGN nature of ten sources (including five previously known objects which validate our method) by detecting the X-ray emission from their accretion discs, thus defining the first bona fide sample of IMBHs in galactic nuclei. All IMBH host galaxies possess small bulges and sit on the low-mass extension of the $M_{mathrm{BH}}-M_{mathrm{bulge}}$ scaling relation suggesting that they must have experienced very few if any major mergers over their lifetime. The very existence of nuclear IMBHs supports the stellar mass seed scenario of the massive black hole formation.
The spin angular momentum S of a supermassive black hole (SBH) precesses due to torques from orbiting stars, and the stellar orbits precess due to dragging of inertial frames by the spinning hole. We solve the coupled post-Newtonian equations describ ing the joint evolution of S and the stellar angular momenta Lj, j = 1...N in spherical, rotating nuclear star clusters. In the absence of gravitational interactions between the stars, two evolutionary modes are found: (1) nearly uniform precession of S about the total angular momentum vector of the system; (2) damped precession, leading, in less than one precessional period, to alignment of S with the angular momentum of the rotating cluster. Beyond a certain distance from the SBH, the time scale for angular momentum changes due to gravitational encounters between the stars is shorter than spin-orbit precession times. We present a model, based on the Ornstein-Uhlenbeck equation, for the stochastic evolution of star clusters due to gravitational encounters and use it to evaluate the evolution of S in nuclei where changes in the Lj are due to frame dragging close to the SBH and to encounters farther out. Long-term evolution in this case is well described as uniform precession of the SBH about the clusters rotational axis, with an increasingly important stochastic contribution when SBH masses are small. Spin precessional periods are predicted to be strongly dependent on nuclear properties, but typical values are 10-100 Myr for low-mass SBHs in dense nuclei, 100 Myr - 10 Gyr for intermediate mass SBHs, and > 10 Gyr for the most massive SBHs. We compare the evolution of SBH spins in stellar nuclei to the case of torquing by an inclined, gaseous accretion disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا