ﻻ يوجد ملخص باللغة العربية
We report on nano-optical imaging study of WSe2 thin flakes with the scanning near-field optical microscopy (NSOM). The NSOM technique allows us to visualize in real space various waveguide photon modes inside WSe2. By tuning the excitation laser energy, we are able to map the entire dispersion of these waveguide modes both above and below the A exciton energy of WSe2. We found that all the modes interact strongly with WSe2 excitons. The outcome of the interaction is that the observed waveguide modes shift to higher momenta right below the A exciton energy. At higher energies, on the other hand, these modes are strongly damped due to adjacent B excitons or band edge absorptions. The mode-shifting phenomena are consistent with polariton formation in WSe2.
Near-field optical microscopy can be used as a viable route to understand the nanoscale material properties below the diffraction limit. On the other hand, atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) are the materials
Several theoretical predictions have claimed that the neutral exciton of TMDCs splits into a transversal and longitudinal exciton branch, with the longitudinal one, which is the upper branch, exhibiting an extraordinary strong dispersion in the meV r
Coupling degrees of freedom of distinct nature plays a critical role in numerous physical phenomena. The recent emergence of layered materials provides a laboratory for studying the interplay between internal quantum degrees of freedom of electrons.
We experimentally demonstrate hot exciton transport in h-BN encapsulated WSe2 monolayers via spatially and temporally resolved photoluminescence measurements at room temperature. We show that the nonlinear evolution of the mean squared displacement o
We experimentally demonstrate time-resolved exciton propagation in a monolayer semiconductor at cryogenic temperatures. Monitoring phonon-assisted recombination of dark states, we find a highly unusual case of exciton diffusion. While at 5 K the diff